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Abstract

Games with costly endogenous separation are repeated games where players have
the option to leave their current partnership (with some cost) and keep on playing
in a newly-formed partnership. Players can also be separated by exogenous factors.
We study equilibria in these games. As a relevant case of application, cooperation in
a repeated Prisoner’s Dilemma is compromised in environments where individuals
are free to leave their partners, since defectors can exploit cooperators and move
on. Previous studies have explored diverse mechanisms to prevent defect-and-leave
strategies from taking hold. We show that, for large enough separation costs, not
only full cooperation, but actually any symmetric sequence of outcomes can be sup-
ported as a (path-protecting) neutrally stable state, which is Lyapunov stable under
the replicator dynamics. JEL classification numbers: C72, C73.

Keywords: Endogenous separation; conditional dissociation; separation costs; path-
protecting; voluntarily repeated games.

1 Introduction

Games with endogenous separation1 are repeated games where players have the option
to leave their current partnership and continue playing in a newly-formed one. These
games are motivated by a wide range of real-world settings where individuals can termi-
nate relationships at will and seek new ones without necessarily transmitting their past
reputation. Examples include labor and credit markets, marriages and friendships, on-
line platforms, collaborative partnerships and many models of interaction in the animal
world.

The study of games with endogenous separation has shed new light on the mecha-
nisms that can sustain cooperation in dynamic strategic environments where players are
free to leave their current partners. In contrast to the classical repeated games frame-
work, where the duration of partnerships is fixed exogenously, the possibility of sepa-
ration and re-matching fundamentally alters both the incentives faced by individuals

1Games with endogenous separation (Rob and Yang, 2010; Deb et al., 2020) are also known as
voluntarily separable repeated games (Fujiwara-Greve and Okuno-Fujiwara, 2009; Fujiwara-Greve et al.,
2012, 2015), voluntary partnership or voluntary continuation games (Vesely and Yang, 2010, 2013) or
games with conditional dissociation (Izquierdo et al., 2010, 2014).
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and the resulting equilibria of the system. In the particular context of social dilemmas,
partial cooperation in games with endogenous separation can be sustained through trust-
building equilibria (where mutual cooperation is established only after sufficiently long
periods of low payoffs) or through polymorphic equilibria involving endogenous positive
assortment of cooperative and defective types (Fujiwara-Greve and Okuno-Fujiwara,
2009; Fujiwara-Greve et al., 2015; Izquierdo et al., 2010, 2014). In both cases, the threat
of abandonment followed by re-matching under grimmer perspectives disciplines short-
term incentives to defect and enables equilibrium paths that would not be possible with
traditional trigger strategies.

A growing body of experimental research has further underscored the importance of
endogenous separation. One prominent line of work examines how the ability to leave
and re-match affects cooperative behavior in social dilemmas. Experiments consistently
show that cooperation is significantly enhanced when players are given the option to
terminate uncooperative relationships and rematch with others (Boone and Macy, 1999;
Hauk, 2003; Wang et al., 2012; Zhang et al., 2016; Nosenzo and Tufano, 2017; Honhon
and Hyndman, 2020; Lee, 2020).

Further support for this view comes from recent simulation studies. Graser et al.
(2025) show that when players in a repeated prisoner’s dilemma are given the option to
terminate a partnership and rematch, cooperation levels increase substantially compared
to the standard repeated game without such an option, as partner switching generates
endogenous assortment among cooperators. Similarly, Wubs et al. (2016) analyze the
coevolution of positive reciprocity, punishment, and partner switching, and find that
when interactions are sufficiently long, partner switching tends to dominate and yields
high levels of cooperation, since cooperators can reliably avoid defectors and match with
other cooperators. These results reinforce the experimental and theoretical evidence that
the ability to abandon defectors and rematch with others constitutes a robust mechanism
for sustaining partial cooperation in repeated interactions.

More generally, these theoretical, experimental and simulation findings highlight that
endogenous separation is not just a behavioral side note but a fundamental feature with
profound implications for the dynamics of repeated interactions.

Nevertheless, the literature on endogenous separation has so far focused primarily
on the case of costless separation. In this setting, a player can leave a partnership at
no additional expense, re-enter the matching pool, and immediately continue playing
with a new partner. While analytically convenient, this assumption is arguably restric-
tive. In many real-world environments, leaving a partnership entails explicit or implicit
costs: time spent searching for a new partner (Enquist and Leimar, 1993), foregone
payoffs during rematching, or even direct switching costs. Recent experimental studies,
such as Lee (2020), have begun to address these issues by explicitly comparing costless
and costly separation. Lee (2020) shows that when separation is costless, defectors can
take advantage of the rematching process by leaving uncooperative relationships without
penalty and immediately seeking new partners. This undermines long-run cooperation.
By contrast, when separation is made costly —whether through a direct penalty or by
introducing a delay before rematching— the incentive to exploit rematching opportuni-
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ties is reduced. Under these conditions, cooperative outcomes are more stable, as players
must weigh the immediate benefits of defection against the costs of separating and re-
matching. Yet, despite these insights, a systematic theoretical framework for games with
costly endogenous separation has so far been lacking. This is precisely the gap our paper
seeks to fill.

In this paper, we extend the framework of symmetric two-player games with endoge-
nous separation (Fujiwara-Greve and Okuno-Fujiwara, 2009; Izquierdo and Izquierdo,
2024) to explicitly incorporate costly separation. Our analysis shows that separation
costs crucially affect both the existence and stability of equilibria. In particular, we es-
tablish that sufficiently high separation costs turn a broad class of deviator-leaving strate-
gies into path-protecting strategies. A path-protecting strategy (Izquierdo and Izquierdo,
2024) is such that, if a population of players adopts this strategy, any player who devi-
ates from the equilibrium path obtains a strictly lower payoff than the incumbents (this
is a stronger equilibrium condition than Nash and than neutral stability). This result
highlights costly separation as an alternative mechanism for sustaining equilibrium out-
comes, distinct from other approaches such as suspicion and gossip (Enquist and Leimar,
1993). Moreover, we show how equilibrium outcomes depend on the magnitude of sep-
aration costs and provide constructive procedures to identify path-protecting strategies
in repeated games with costly separation.

We also consider an important case of separation costs: delayed rematching (Enquist
and Leimar, 1993). In many applications, individuals who terminate a partnership must
wait before establishing a new one, effectively incurring an opportunity cost. We model
this as a delay during which no payoffs are obtained and analyze its effect on equilibrium
dynamics. Our results demonstrate that such delays reinforce the disciplining role of
direct separation costs and expand the set of stable equilibria that support partial or
full cooperation. This is consistent with the results by Enquist and Leimar (1993), who
show that, with long search times, full cooperation can be sustained in equilibrium.

Overall, this paper makes three contributions. First, it introduces a general theoret-
ical framework for repeated games with costly endogenous separation, extending earlier
models of costless separation. Second, it characterizes strategies that can constitute con-
ventions or stable equilibria under direct separation costs. Third, it considers delayed
rematching as an alternative source of separation costs and shows how this affects the
existence and stability of equilibria.

The rest of the paper is structured as follows. In section 2 we define games with
costly endogenous separation derived from normal-form stage games, and we present
their main elements: strategies, population states, pool states and payoff functions. In
section 3 we define and analyze the properties of two different notions of equilibrium in
these games: Nash equilibrium and neutrally stable equilibrium. In Section 4 we dis-
cuss the existence of path-protecting strategies, which ensure neutrally stable equilibria
that are robust against unilateral deviations from the equilibrium path. We show how
path-protecting strategies can be checked for, and found, stemming from deviator-leaving
strategies: strategies which leave players who deviate from the equilibrium path and stay
otherwise. Our main result in this section states that, for large enough separation costs,
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every deviator-leaving strategy is path-protecting (and, consequently, neutrally stable).
For a given separation cost, we also show how to find or check for path-protecting strate-
gies, focusing on a family of deviator-leaving strategies whose path ends up (infinitely)
repeating some finite pattern or sequence of action profiles (outcomes). Section 5 con-
siders separation costs caused by delayed re-matching. Here, players who separate are
assumed to spend some average number of periods searching for a new partner, during
which no payoff is obtained. Finally, in section 6 we present some conclusions. Proofs
are detailed in appendix A.

2 Repeated games with costly endogenous separation

We consider a population of agents who are matched in couples or partnerships to play
a symmetric two-player normal-form stage game. The stage game G = {A,U} is defined
by an action set A = {a1, ..., an}, and a payoff function U : A2 → R, where U(ak, al)
represents the payoff obtained by a player using action ak whose opponent plays action al.
Every stage game G has an associated repeated game with costly endogenous separation
GCES , characterized by a set of strategies2 and a payoff function derived from the payoffs
of the stage game.

After playing a stage game G at a given (discrete) time period, partnerships may
remain together and play the stage game again the next time period. A partnership
is broken if some exogenous factor breaks the partnership (exogenous separation) or if
either one of the players, according to their strategy, decides to break it (endogenous
separation). The probability that a partnership survives exogenous separation after each
stage game is called the continuation probability δ. If a partnership survives exogenous
separation, it may still break up endogenously. At the beginning of every time period,
all single players are randomly (re-)matched in partnerships, and then all players play
the stage game. There is no information flow between partnerships (Ghosh and Ray,
1996), so there are no reputation effects: single players (those who are rematched) are
anonymous.3 Separation entails a cost for the separated players. We consider a cost
c0 after exogenous separation and a (possibly different) cost c > 0 after endogenous
separation. Figure 1 captures the structure of the model in a flowchart.

2We refer to choices in the stage game G as actions, reserving strategy for behavior in the repeated
game (Mailath and Samuelson, 2006).

3Fujiwara-Greve et al. (2012) consider a model where players may voluntarily provide information
across partnerships in the context of the Prisoner’s Dilemma.
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Start of the round

Stage game
U(a, a′)

Exogenous
separation

Does any
player leave?

Both player
and partner
go to the pool

Cost: −c0

Cost: −c

δ

1− δ

Random
pairing

No

Same
partner

Yes

Figure 1: Structure of a repeated 2-players game with costly endogenous separation. Both players
incur a cost −c0 after exogenous separation and a cost −c when endogenous separation occurs.

2.1 Strategies in GCES

A strategy i for a player determines the choice that the player makes given any past
history of play within a partnership.

For any given partnership, index t ∈ {1, 2, ...} is used to denote the tth time that the
stage game is played in that partnership, assuming the partnership is not broken before.

A history of play of length t ≥ 1, a[1,t] = (a[1], a[2], ..., a[t]) ∈ (A2)t, is a sequence of t
action profiles. The set of all possible histories of any length (including also the empty
history a[1,0] = ∅, or history of length 0) is

H ≡
∞⋃
t=0

(A2)t,

where we have considered (A2)0 ≡ {∅}.
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Let Ã ≡ A∪{break} be the set of choices, where break represents the decision to break
the current partnership. A strategy i for the repeated game is a mapping i : H → Ã, from
the set of possible histories to the set of choices, that prescribes one choice i(a[1,t]) ∈ Ã
for every possible history. As players in a new partnership are assumed to play at least
once together before deciding whether to break their partnership, we require i(∅) ∈ A.
Let Ω be the set of strategies.

For any pair of strategies i and j, their endogenous breakup period Tij ≥ 1 is the
number of stage games they are meant to play together before one of them decides to
break up. If an i9j partnership never breaks up endogenously, then Tij = ∞.

2.2 Population states, pool states and payoffs in GCES

We consider populations where the number of different strategies being played is finite.
Let xi be the fraction of the population using strategy i ∈ Ω. A (population) state x is
a strategy distribution over Ω with finite support S(x) ⊂ Ω, i.e., x is a function from Ω
to [0, 1] that:

i) assigns a positive value xi > 0 to each strategy i in a finite set S(x),

ii) assigns the value 0 to strategies that are not in S(x), and

iii) satisfies
∑

i∈S(x) xi = 1.

Let D be the set of distributions with finite support. Monomorphic states at which
all players use the same strategy i are represented as ei. These are distributions such
that xi = 1 and xj = 0 for every j ∈ Ω \ {i}.

Before matching, the set of players who are single and are to be rematched is called
the matching pool. In order to calculate the payoffs in GCES we assume that the
distribution of strategies in the matching pool has reached a stationary distribution
p ∈ D consistent with the distribution of strategies in the population x.

Normalizing the mass of the matching pool to 1 and assuming stationarity, we have
that, at every time period, the mass of i-players in partnerships with j-players and
playing its tth time together is pipjδ

t−1, for t ∈ {1, ..., Tij}. The total mass of i-players
in the population is then

massi = pi
∑

j∈S(x)

pj

Tij∑
t=1

δt−1 =
pi

1− δ

∑
j∈S(x)

pj (1− δTij )

And the population distribution x corresponding to pool distribution p is

xi =
pi

∑
j∈S(p) pj(1− δTij )∑

k,j∈S(p) pk pj(1− δTkj )
. (1)

Equation (1) defines an invertible4 function f : D → D such that x = f(p). Given a
population distribution x, there is a unique pool distribution p = f−1(x) satisfying (1).

4See Izquierdo and Izquierdo (2024).
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For t ∈ {1, ..., Tij}, let U [t]
ij denote the payoff obtained by an i-player in a partnership

with a j-player the tth time they play together. The (stationary) mass of such players is
pipjδ

t−1. Adding the mass of all i-players with their payoff (including their cost if they
separate), we find that the average payoff to strategy i given pool distribution p is:5

F̂i(p) ≡
pi
∑

j∈S(p) pj

(∑Tij

t=1 δ
t−1 U

[t]
ij −

∑Tij

t=1 δ
t−1 (1− δ)c0 − δTijc

)
massi

=

= (1− δ)

∑
j∈S(p) pj

(∑Tij

t=1 δ
t−1 U

[t]
ij − δTijc

)
∑

j∈S(p) pj (1− δTij )
− (1− δ)c0 (2)

Consequently, the payoff to strategy i at monomorphic population ej is

Fij ≡ F̂i(ej) =
1− δ

1− δTij

 Tij∑
t=1

δt−1 U
[t]
ij − δTijc

− (1− δ)c0 (3)

It follows from equations 2 and 3 that, for p = f−1(x), the payoff to strategy i at
population state x is

Fi(x) = F̂i(p) =
∑

j∈S(x)

pj (1− δTij )∑
k∈S(x) pk (1− δTik)

Fij , (4)

which shows that Fi(x) is a convex combination of the payoffs Fij for j ∈ S(x), with
(strictly) positive coefficients for the convex combination.

Finally, for a group of players with strategy distribution y ∈ D entering a population
with strategy distribution x, the average payoff of y against x, E(y,x), is defined by:

E(y,x) ≡
∑

i∈S(y)

yiFi(x). (5)

For fixed δ, the last term in (2), (1 − δ)c0, is a constant that affects every strategy
in the same way. This leads to the following observation, which implies that c0 does not
affect the strategic nature of the game.

Observation 1. The cost of exogenous separation c0 does not affect the payoff differ-
ences between strategies.

Given that the cost of exogenous separation c0 is merely a translation of the payoffs,
for the purpose of analyzing equilibria and stability under various dynamics such as the
replicator dynamics, we can assume c0 = 0 without loss of generality. Taking c0 = 0
leads to

Fij =
1− δ

1− δTij

 Tij∑
t=1

δt−1 U
[t]
ij − δTijc

 (6)

5Here we are assuming that exogenous separation happens before endogenous separation (see figure 1).
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3 Equilibria in games with costly endogenous separation

3.1 Definitions: Nash and neutrally stable strategies in GCES

A strategy distribution y ∈ D is a best response to state x if (and only if) E(y,x) ≥
E(z,x) for every z ∈ D. It follows from (5) that y is a best response to x if every strategy
in its support S(y) is a best response to x, i.e., if Fj(x) ≥ Fk(x) for every j ∈ S(y) and
k ∈ Ω.

Definition 1 (Nash equilibrium state). A state x ∈ D is Nash if it is a best response to
itself.

If a monomorphic state ei is Nash, we say that strategy i is a Nash strategy. Con-
sequently, a strategy i is Nash if and only if Fii ≥ Fji for every j ∈ Ω.

Definition 2 (Neutrally stable state). A state x ∈ D is neutrally stable if

E(x,x) ≥ E(y,x) for every y ∈ D, i.e., x is Nash, and

E(x,y) ≥ E(y,y) for every y ∈ D such that E(y,x) = E(x,x).

A strategy i is said to be neutrally stable (NS) if and only if its associated monomorphic
state ei is neutrally stable.

There are other alternative definitions of neutral stability in the literature (Bomze
and Weibull, 1995). The definition we adopt here guarantees Lyapunov stability in the
replicator dynamics for games with endogenous separation (Izquierdo and Izquierdo,
2024). We could consider stronger equilibrium conditions, such as evolutionary stability,
but by the standard argument for repeated games (Boyd and Lorberbaum, 1987), there
are no evolutionarily stable states (at least with finite support) in games with costly
endogenous separation: given any equilibrium and an incumbent strategy i, there is al-
ways some alternative strategy j ̸= i with the same behavior as i against the equilibrium
strategies.

3.2 Nash strategies

The following three lemmas are adaptations of equivalent results for games with endoge-
nous separation and no cost (c = 0) in Izquierdo and Izquierdo (2024). The first two
lemmas are independent of the separation cost, while the third lemma opens the door
to new equilibrium strategies in games with separation costs (vs. no costs).

Lemma 3.1. If i is a Nash strategy with finite Tii, then the action profile at the breakup
stage Tii of an i9i partnership is a Nash profile of the stage game G.

The reason is that, if the last action profile is not Nash, then a deviation in action at
that last stage (to a best-response action of the stage game, leaving afterwards) would
be profitable.
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Lemma 3.2. If (a, a) is a Nash action profile of the stage game, any strategy i that
(independently of its partner’s behavior) chooses action a for some arbitrary number
T ≥ 1 of periods and breaks the partnership at period T is a Nash strategy of GCES.

The proof of lemma 3.2 considers that it is not possible to obtain a larger stage game
payoff against i (than i itself) an any stage before the T th, or to extend the interaction
with i beyond that stage.

Lemma 3.3. The first action a∅ played by a Nash strategy in GCES must satisfy

UBR(a∅) ≤ M + δc,

where UBR(a∅) is the best-response stage payoff to action a∅ and M = maxa∈A U(a, a)
is the maximum symmetric stage-game payoff.

The proof of lemma 3.3 considers a strategy that plays a best response action to a∅

and then leaves. The payoff to such a strategy (against the Nash strategy which plays
a∅ as initial action) is UBR(a∅)− δc. This cannot be greater than the payoff to the Nash
strategy, which is in turn bounded above by M .

To illustrate some applications of each result, we consider the Prisoner’s Dilemma
and the Hawk-Dove game, with actions C and D and payoffs UCC , UCC , UDC and UDC .
(table 1). In the Prisoner’s Dilemma, C stands for cooperate and D for defect; in the
Hawk-Dove game, C corresponds to Dove and D to Hawk. In both cases, coordinating
on C is more efficient than on D (the maximum symmetric stage payoff is UCC > UDD),
and D is the minmax action, i.e., the action that minimizes the payoff obtained by a
player who adopts a best-response action.

In the Prisoner’s Dilemma (UCD < UDD < UCC < UDC), D is a dominant action
and (D,D) is a Nash action profile. In the Hawk-Dove (UDD < UCD < UCC < UDC),
the best-response to each action is the other action (this is an anti-coordination game)
and there is no (pure) Nash action profile.

(C D

C 3 1
D 4 2

) (C D

C 3 2
D 4 1

)
Table 1: Left: A Prisoner’s Dilemma game, with C for Cooperate and D for Defect. Right: A

Hawk-Dove game, with C for Dove and D for Hawk.

For the Prisoner’s Dilemma, our previous lemmas lead to these results:

• Strategies that always play D (regardless of their partner’s behavior) for a fixed
number of periods in a partnership and then leave are Nash (lemma 3.2).

• The condition c ≥ UDC−UCC
δ is necessary for a nice strategy (a strategy that

begins a partnership by playing C) to be Nash. This can be considered quite a
strong requirement: in order to have a cooperative equilibrium, the separation
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cost must be greater than the payoff advantage of unilateral defection over mutual
cooperation (lemma 3.3).

For the Hawk-Dove we obtain these results:

• A strategy i with finite breakup period Tii cannot constitute a Nash equilibrium
(lemma 3.1).

• The condition c ≥ UDC−UCC
δ is necessary in order to have a Nash strategy that

begins a partnership by playing C, i.e. Dove (lemma 3.3).

3.3 Neutrally stable strategies

The following lemma will be useful to compare payoffs for different strategies. We need
to introduce some notation first:

• Let an i-j path a
[1,Tij ]
ij = (a

[1]
ij , a

[2]
ij , ..., a

[Tij ]
ij ) be the sequence of Tij action profiles

played in an i-j partnership until their breakup period.6

• Let an i-j repeated path h
[∞]
ij = (a

[1,Tij ]
ij , a

[1,Tij ]
ij , ...) be an infinite repetition of

a
[1,Tij ]
ij . Note that if Tij = ∞ then h

[∞]
ij = a

[1,∞]
ij .

Lemma 3.4. If two strategies i1 and i2 are such that h
[∞]
i1j

= h
[∞]
i2j

, then

• If Ti1j > Ti2j then Fi1j > Fi2j.

• If Ti1j = Ti2j then Fi1j = Fi2j.

Lemma 3.4 states that if two strategies i1 and i2 generate the same repeated path
when playing against j, then the strategy with the longest breakup period is “better”
against j (because it suffers separation costs less often). This result implies a vulnera-
bility for strategies which break up in the equilibrium path, and leads to the following
proposition.

Proposition 1. With costly endogenous separation, a neutrally stable strategy never
breaks up in the equilibrium path.

Note that proposition 1 does not hold for games without separation costs (c =
0), which admit neutrally stable strategies with finite breakup period (Izquierdo and
Izquierdo, 2024).

6a[1,t] represents some sequence of t action profiles, while a
[1,t]
ij represents the first t action profiles

generated by strategy i when playing against strategy j, assuming they do not break up before stage t.
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4 Path-protecting strategies and deviator-leaving strategies

4.1 Introduction

In this section we develop the main contribution of the paper. Our goal is to study
stable equilibria in games with costly endogenous separation, focusing on path-protected
equilibria supported by some path-protecting strategy. These strategies ensure that any
unilateral deviation from the equilibrium path yields a strictly lower payoff for the de-
viator. Path-protecting strategies are neutrally stable in games with costless separation
(Izquierdo and Izquierdo, 2024); here we show that this result extends to games with
costly separation. Furthermore, increasing separation costs expands the range of path-
protecting strategies.

We also define deviator-leaving strategies, which are strategies that stay with their
partner if and only if their partner mirrors their actions. We show that, for sufficiently
large separation costs, every deviator-leaving strategy becomes path-protecting, which
implies that any infinite series of symmetric outcomes can be supported in equilibrium.
Finally, we illustrate our results by applying them to the family of trust-building strate-
gies, highlighting how the presence of costs affects their ability to sustain cooperation.

4.2 Properties

A strategy i is path-protecting (Izquierdo and Izquierdo, 2024) if, when playing against
i (i.e., against a monomorphic population ei of i-players), any strategy j that deviates
from i’s choices obtains a strictly lower payoff than by not deviating. Formally:

Definition 3 (Path-protecting strategy). A strategy i ∈ Ω is path-protecting if for all
j ∈ Ω:

a
[1,Tjj ]
jj ̸= a

[1,Tii]
ii =⇒ Fji < Fii.

For the case with no separation costs (c = 0), it has been shown (Izquierdo and
Izquierdo, 2024) that a path-protecting strategy i must have an infinite i-i path and,
also, that path-protecting strategies are neutrally stable. These results can be extended
to GCES , as we show next.

Lemma 4.1. In games with and without separation costs, if i is path-protecting then
Tii = ∞.

The proof of lemma 4.1 considers that, if Tii is finite, then one can find alternative

strategies j ̸= i such that the outcomes in path a
[1,Tjj ]
jj are the same as the outcomes in

path a
[1,Tii]
ii up to period Tii, i.e. a

[1,Tii]
jj = a

[1,Tii]
ii , but Tjj > Tii = Tji, because i breaks

an i-j partnership at period Tii, but j does not. Such strategies satisfy Fji = Fii, so

we have strategies j that generate a path a
[1,Tjj ]
jj ̸= a

[1,Tii]
ii , but obtain the same payoff

against i as i does, i.e. Fji = Fii.

Proposition 2. In games with and without separation costs, path-protecting strategies
are neutrally stable.
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The proof of proposition 2 shows that, if j and k are alternative best responses to
i, then they cannot obtain a larger payoff (than i against them) when playing against
each other.

If the stage game has some strict Nash symmetric action profile, one can obtain

path-protecting strategies from such actions: any strategy i whose path a
[1,∞]
ii is an

infinite repetition of the same strict Nash profile of the stage game, and which breaks
the partnership if its partner deviates from such path, is path-protecting.

Our next proposition shows that the property of being path-protecting is not lost
when separation costs increase.

Proposition 3. If a strategy is path-protecting for some separation cost c1 ≥ 0 then it
is path-protecting for every separation cost c ≥ c1.

It follows from proposition 3 that if a strategy is path-protecting in a game with
endogenous separation and no cost (c = 0), then it is path-protecting with costs. Con-
sequently, the following result, which is adapted from Izquierdo and Izquierdo (2024)
for c = 0, holds for GCES with c > 0. The result considers deviator-leaving strategies,
which are defined below.

Definition 4 (Deviator-leaving strategy). A strategy i ∈ Ω is deviator-leaving if it has

an infinite path a
[1,∞]
ii and breaks a partnership if its partner deviates from i’s own action.

Proposition 4. Let Φ = (Φ[t])Tt=1 be any finite sequence of T symmetric action profiles

with average stage payoff ŪΦ =
∑T

t=1 U(Φ[t])
T strictly greater than the pure minmax payoff

of the stage game. For large enough continuation probability δ < 1, there are deviator-
leaving path-protecting strategies whose equilibrium path, after a finite transient phase in
which a minmax profile is played, is an infinite repetition of the sequence Φ.

As an example, in a Prisoner’s Dilemma, and in a Hawk-dove game, the minmax
profile is DD,7 and the pure minmax payoff is UDD. The deviation-deterring or minmax
phase in proposition 4 is a Tm-long series of DD action profiles. For the pattern-playing
phase, the infinitely repeated finite pattern Φp can be any finite sequence of DD and
CC action profiles with at least one CC in the sequence, which guarantees an average
stage payoff ŪΦp > UDD.

Our next proposition shows that, for large enough separation costs, every deviator-
leaving strategy is path-protecting and, consequently, any infinite series of symmetric
outcomes can be supported in equilibrium.

Proposition 5. Given a fixed continuation probability δ ∈ (0, 1), for a sufficiently large
separation cost c, any infinite sequence of (symmetric) outcomes is the equilibrium path
of a path-protecting strategy.

Specifically, for c > B−b
δ(1−δ) , where B is the maximum stage game payoff and b is the

minimum symmetric stage game payoff, every deviator-leaving strategy is path-protecting

(independently of the generated path a
[1,∞]
ii ) .

7For compactness, here we represent action profiles (D,D) as DD.
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There are several differences between the standard folk theorem and the results of
proposition 5. These differences show that a game with very large separation costs is not
equivalent to a game in which separation is not allowed. The standard folk theorem states
that, for a sufficiently large continuation probability, any individually rational sequence
of outcomes (i.e., such that players obtain al least their stage-game minmax payoff)
can be supported in equilibrium. In contrast, proposition 5, using a stronger notion of
equilibrium, allows any continuation probability in (0, 1) and any payoffs (corresponding
to symmetric outcomes) even if they are below the stage-game minmax payoff. The
threat of breaking up a partnership inflicting a large damage (even if also suffered by
the leaver) can stabilize even series of outcomes that are not individually rational in the
standard framework.

Example 1. If the stage game is a Prisoner’s Dilemma or a Hawk-Dove, for c >
UDC−UDD

δ(1−δ) , every deviator-leaving strategy is path-protecting.

To check whether a deviator-leaving strategy i is path-protecting (whether every
deviation is harmful) one has to consider an infinite number of possible deviations along

the i-i path a
[1,∞]
ii . However, if the path a

[1,∞]
ii of the deviator-leaving strategy ends

up repeating some finite sequence of outcomes, or pattern Φp, our next lemma allows
to reduce considerably (in some cases to just one) the number of periods that must be
checked to ensure that all possible deviations are harmful. Specifically, it is enough to
consider deviations until the pattern is played once.

In preparation of the lemma, let Φ0, Φp and Φ1 represent finite sequences of action
profiles with respective length T0 ≥ 0, Tp ≥ 1 and T1 ≥ 1. Let (Φ)k, where k is a
non-negative integer, represent k repetitions of the action profiles in Φ, with (Φ)0 being
empty, and let (Φ)∞ represent an infinite repetition.

Lemma 4.2. Let i and j be two (not necessarily different) strategies with infinite path

a
[1,∞]
ji = (Φ0, (Φp)

∞), where Φ0 may be empty. If j1 and j2 are strategies such that

a
[1,Tj1i

]

j1i
= (Φ0,Φ1) and

a
[1,Tj2i

]

j2i
= (Φ0, (Φp)

k,Φ1) for some non-negative integer k,

then
Fj1i < Fji ⇐⇒ Fj2i < Fji

and
Fj1i > Fji ⇐⇒ Fj2i > Fji.

As an example, if the stage game is the Prisoner’s Dilemma or the Hawk-Dove, we
saw in section 3 that the condition c ≥ UDC−UCC

δ is necessary for a nice strategy (a
strategy that begins a partnership by playing C) to be Nash. Consider a deviator-

leaving strategy i with fully cooperative path a
[1,∞]
ii = (CC)∞. Its payoff against itself

is Fii = UCC . To check whether i is Nash or path-protecting, applying lemma 4.2, it is
enough to consider a deviation at the first stage. The payoff (against i) to a strategy j
that plays D at the first stage is Fji = UDC − δc. Consequently:

13



• For c < UDC−UCC
δ there are no fully cooperative equilibria (lemma 3.3).

• For c = UDC−UCC
δ there are fully cooperative Nash equilibria (lemma 4.2).

• For c > UDC−UCC
δ there are fully cooperative path-protected equilibria. For in-

stance, the strategy that always plays C and breaks a partnership if its partner
deviates from playing C is path-protecting (lemma 4.2).

4.3 Application: Trust-building strategies with costly separation

To gain insight into the effect of the cost c on the existence and stability of equilibria, let
us consider the family of trust-building strategies (Fujiwara-Greve and Okuno-Fujiwara,
2009), which were initially defined for the Prisoner’s Dilemma but can also be extended
to the Hawk-Dove. A k-period trust-building strategy is a deviator-leaving strategy i

with path a
[1,∞]
ii = (DD)k(CC)∞, for some non-negative integer k. The trust-building

phase is (DD)k and the cooperation phase is (CC)∞. For k = 0 we actually have a fully
cooperative strategy (when playing against itself), with no trust-building phase. The
payoff to a k-period trust-building strategy i against itself is

Fii = (1− δk)UDD + δkUCC > UDD

A strategy j that deviates during the trust-building phase obtains a payoff Fji <
UDD < Fii (since j obtains payoffs UDD and UCD < UDD only). To ensure that devia-
tions during the cooperation phase are harmful, given lemma 4.2, it is enough to study
a strategy j that deviates to playing D the first time the trust-building strategy plays
C. The payoff to such a strategy is

Fji =
(1− δk)UDD + (1− δ)δkUDC − (1− δ)δk+1c

1− δk+1

Consequently, a trust-building strategy is path-protecting if

(1− δ) δ c + (1− δk+1)UCC > δ(1− δk)UDD + (1− δ)UDC (7)

On the other hand, any Nash strategy with path (DD)k(CC)∞ must satisfy

(1− δ) δ c + (1− δk+1)UCC ≥ δ(1− δk)UDD + (1− δ)UDC (8)

because it needs to obtain at least as much as a strategy that at period k+1 deviates
to playing D and leaves. So the strict inequality (7) is enough to have a path-protected
equilibrium with path (DD)k(CC)∞, and the non-strict inequality (8) is necessary to
have a Nash equilibrium with that path.

We could also consider k-period trust-building grim strategies with path a
[1,∞]
ii =

(DD)k(CC)∞ which punish deviations by perpetual defection without leaving. How-
ever, the following proposition shows that deviator-leaving strategies are more effective
ensuring cooperation than grim strategies, since the former ones are path-protecting in
cases where the latter ones are not.
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Proposition 6. Let i be a k-period trust-building grim strategy. Then, i is path-
protecting if and only if both

1. Condition (7) holds, so the corresponding deviator-leaving strategy is path-protecting,
and

2. δ > UDC−UCC
UDC−UDD

.

Figure 2 shows the combinations of continuation probability δ and cost c needed
for different k-period trust-building strategies to be path-protecting, with stage game
payoffs UCC = 3, UDC = 4, UDD = 1 and UCD < 3. The stage game can be either a
Prisoner’s Dilemma (if UCD < 1) or a Hawk-Dove (if 1 < UCD < 3). For values of c
and δ below a k-line, the path generated by the corresponding k-period trust-building
strategy cannot be achieved in equilibrium. For k = 0 (full cooperation), this line is
c = UDC−UCC

δ . In the grey region δ < UDC−UCC
UDC−UDD

trust-building grim strategies cannot
constitute an equilibrium.

Figure 2: The k-lines separate the regions where path (DD)k(CC)∞ can be a (path-protected)
equilibrium path (above the line) from the region where it cannot be an equilibrium path (below the
line). The gray zone δ < UDC−UCC

UDC−UDD
represents a region where trust-building grim strategies cannot be

Nash. Stage game payoffs UCC = 3, UDC = 4, UDD = 1, UCD < 3. The stage game can be a Prisoner’s
Dilemma or a Hawk-Dove.

5 Separation costs due to delayed re-matching

In some contexts it seems natural to assume that, after a breakup, partners remain
unmatched looking for a partner, for some number of periods, until they find a new
partner. If the stage game payoffs are non-negative (e.g., if payoffs represent Darwinian
fitness) and players receive no payoff while they remain single, this delayed re-matching
constitutes an alternative separation cost.
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Let us assume that, after a breakup, partners remain single, without playing the
stage game, for w periods during which they receive no payoff. Normalizing the mass of
the matching pool to 1 and assuming stationarity, the mass of i-players who are matched
(each period) to a j-player is pipj , and the mass of single i-players who are to be matched
at some point during the following w periods to a j-player is pipjw. The total mass of
i-players in a population x is

∑
j∈S(x) pi pj(w + 1 + δ + ... + δTkj−1), and the payoff to

an i-player in a population of j-players is then:

Fw
ij ≡

∑Tij

t=1 δ
t−1 U

[t]
ij

w + 1−δTij

1−δ

(9)

A direct adaptation of lemma 4.2 can be shown to hold for Fw
ij . Consequently, if

we consider a deviator-leaving strategy i whose (infinite) path a
[1,∞]
ii ends up repeating

some sequence of outcomes, then, in order to check that all deviations from the path are
harmful, it is enough to check a small number of deviations.

Focusing on the Prisoner’s Dilemma and the Hawk-Dove, we can study the conditions
to have a fully cooperative path-protected equilibrium in this framework. Let i be a

deviator-leaving strategy with path a
[1,∞]
ii = (CC)∞. We have

Fw
ii =

UCC

(1− δ)w + 1

To ensure that all deviations are harmful, given lemma 4.2, it is enough to consider
a strategy j that deviates to playing D on the first period of a partnership with i. The
payoff to such a strategy is

Fw
ji =

UDC

w + 1

Consequently, strategy i is path-protecting if Fw
ji < Fw

ii , which is the case if and only
if:

δ > 1− UCC

UDC
and w >

UDC − UCC

UCC − (1− δ)UDC
(10)

Otherwise, it is also easy to check that if Fw
ji > Fw

ii then there are no fully cooperative
equilibria (for this, consider a strategy that plays D and leaves).

Using the same method as in section 4.3 for k-period trust-building strategies, we
find that the region where they constitute equilibria is given by

(1− δk)UDD + (1− δ)δkUDC

(1− δ)w + 1− δk+1
<

(1− δk)UDD + δkUCC

(1− δ)w + 1
.

This region is shown in Figure 3 for some specific payoff values of the stage game. For
the case considered in Figure 3, a searching period w = 1 is enough for full cooperation
to be neutrally stable when δ > 1

2 . In contrast, full cooperation cannot be supported in
equilibrium in the costless case (w = 0). This is consistent with the results by Enquist
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Figure 3: The k-lines separate the regions where path (DD)k(CC)∞ can be a (path-protected)
equilibrium path (above the line) from the region where it cannot be an equilibrium path (below the
line). Stage game payoffs UCC = 3, UDC = 4, UDD = 1, UCD < 3. The stage game can be a Prisoner’s
Dilemma or a Hawk-Dove. The vertical line corresponding to δ∞ = 1− UCC

UDC
represents the asymptote

of every k-line.

and Leimar (1993) who, using a related model, show that increasing the search time for
new partners helps to stabilize full cooperation.

Although delayed re-matching constitutes a cost for the separating players, it is
inherently different from the direct separation cost c studied previously. Cooperation
may be sustained for every δ if c is large enough, but only if δ is greater than a threshold
δ∞ under delayed re-matching. For values of δ < δ∞, no trust-building strategy can be
supported in equilibrium regardless of the value of w (see figure 3).

A direct separation cost c can be introduced in the delayed re-matching case, and this
naturally enhances cooperation. Figure 4 shows that full cooperation can be supported
in equilibrium for costs c < UDC−UCC if searching period w is large enough. Therefore,
the separation cost must no longer be greater than the payoff advantage of unilateral
defection. In Figure 4, a small direct cost (c = 0.625) combined with a minimal searching
period (w = 1) allows full cooperation to be sustained in scenarios with low continuation
probability (δ > 0.4). The inclusion of c lowers the threshold δ∞ and the k-lines in
Figure 4 with respect to figure 3.

6 Conclusions

This paper studies the effect of separation costs in games with endogenous separation.
It focuses on the characterization of strategies that can support a path-protected equi-
librium, i.e., an equilibrium such that any strategy which deviates from the equilibrium
path obtains a strictly lower payoff than by not deviating. Path-protected equilibria are
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Figure 4: A separation cost c = 0.625 is considered. The k-lines separate the regions where path
(DD)k(CC)∞ can be a (path-protected) equilibrium path (above the line) from the region where it

cannot be an equilibrium path (below the line). Stage game payoffs are UCC = 3, UDC = 4, UDD = 1,
and UCD < 3. The stage game can be a Prisoner’s Dilemma or a Hawk-Dove. The vertical line

corresponding to δ∞ = 1
2c

(
c + UDC −

√
c2 + 2c (2UCC − UDC) + U2

DC

)
represents the asymptote of

every k-line.

neutrally stable.
We show that separation costs facilitate the existence of path-protected equilibria:

if a strategy is path-protecting for a given separation cost, it is also path-protecting for
any larger cost. A larger separation cost can also reduce the minimum continuation
probability δ required for a strategy to be path-protecting.

We find that an important family of strategies is the set of deviator-leaving strategies:
strategies which leave partners who deviate from the equilibrium path or convention, and
stay otherwise. When considering the effects of separation costs, one might argue that
deviator-leaving strategies should be harmed by large separation costs, as they suffer a
large cost if separating. However, we show that, for large enough separation cost, every
deviator-leaving strategy is actually path-protecting: the threat of separation acts as a
strong deterrent against deviations from the path, but there is no actual separation in
the equilibrium path.

For the special case of the Prisoner’s Dilemma with endogenous separation, it is well
known that full cooperation cannot be supported in equilibrium with no separation cost,
because a defector who leaves after its first interaction would exploit a population of
initial cooperators. In contrast, with separation costs, we show that full cooperation
can be supported as a path-protected equilibrium. However, this requires an arguably
large separation cost – greater than the stage payoff advantage of unilateral defection
(temptation) over mutual cooperation (reward)–, and under this condition many other
paths can also be supported in equilibrium. The direct cost of separation needed to
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support full cooperation can be eliminated, or considerably reduced, if combined with
costs due to delayed re-matching.
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A Proofs

Proof of lemma 3.1. Consider a strategy j that, when playing against i, behaves like i
up to period Tii− 1 and at period Tii chooses a best response action (of the stage game)

to the action chosen by i and leaves. If the last action profile a
[Tii]
ii is not Nash, then

Fji > Fii, so i is not Nash.

Proof of lemma 3.2. When playing against itself, a strategy i as in the lemma repeats
the Nash profile (a, a) for T times before endogenous breakup. For every strategy j, we
have Tji ≤ T . When playing against i, any strategy j that does not choose action a

cannot obtain a larger stage game payoff U
[t]
ji than by choosing a at any stage before T ,

and, considering (6), if Tji < T , then Fji < Fii. And if Tji = T , then Fji ≤ Fii.

Proof of lemma 3.3. Let i be a strategy whose first action is a∅ and let j be a strategy
whose first action is a (stage game) best response to a∅ and which leaves i after the first
stage (so Tji = 1). From (6), we have Fji = UBR(a∅) − δc and Fii ≤ M . The Nash
condition Fji ≤ Fii leads to UBR(a∅)− δc ≤ M .

Proof of lemma 3.4. For a sequence of T action profiles a[1,T ] = (a[1], a[2], ..., a[T ]), where
a[t] ∈ A2 is the tth action profile in the sequence, let the normalized discounted value
V (a[1,T ]) be

V (a[1,T ]) ≡ 1− δ

1− δT

T∑
t=1

δt−1U(a[t]). (11)

From (6), and considering that V (a
[1,Tij ]
ij ) = V (h

[∞]
ij ), we have:

Fij = V
(
h
[∞]
ij

)
− 1− δ

1− δTij
δTijc (12)

The last term in (12) is negative and monotonic increasing with Tij , which proves
the result.
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Proof of proposition 1. By contradiction. Suppose that i is neutrally stable and Tii < ∞.

Then there is a strategy j with a
[1,Tjj ]
jj = (a

[1,Tii]
ii , a

[1,Tii]
ii ) such that h

[∞]
jj = h

[∞]
ij = h

[∞]
ii ,

Tij = Tii and Tjj = 2Tii, i.e., a j-j partnership behaves like an i-i partnership up until
period Tii and then restarts the same sequence of outcomes again without breaking the
partnership until Tjj = 2Tii. By lemma 3.4, we obtain Fji = Fii and Fij < Fjj , so i is
not neutrally stable.

Proof of lemma 4.1. if Tii is finite, then a strategy j that behaves like i (when playing
with i) until period Tii but does not choose to leave i at that period obtains Fji = Fii,
with Tjj > Tii, so i is not path-protecting.

Proof of proposition 2. If y is a best response to strategy i (equivalently, to state ei)
then every strategy in the support of y is a best response to i. Suppose that i is path-
protecting. Then any two strategies j and k that are best response to i generate the

same history a
[1,∞]
jk = a

[1,∞]
ii when playing in partnerships, because they are never the

first to deviate from the path. So if i is path-protecting then i is Nash (this is immediate
from the definition) and the following implication holds: E(y, ei) = Fii =⇒ E(ei,y) =
Fii = E(y,y).

Proof of proposition 3. Let F c
ij represent the payoff Fij for separation cost c. If i is path-

protecting for separation cost c1 < c2, then, from (12), F c2
ii = F c1

ii (because Tii = ∞)
and F c2

ji ≤ F c1
ji for every j ∈ Ω.

Proof of proposition 5. Let a[1,∞] be an arbitrary path of symmetric outcomes and let

i be a strategy with path a
[1,∞]
ii = a[1,∞] which breaks the partnership if its partner

deviates from the path. Let j be a strategy that, when playing with i, deviates from i’s
choice at period T (so Tij = T ). Let B be the maximum stage game payoff and let b be
the minimum symmetric stage game payoff, b = mina∈A U(a, a). From (6) we have

Fii = (1− δ)

[
T−1∑
t=1

δt−1 U
[t]
ii + δT−1U

[T ]
ii + δT

∞∑
t=1

δt−1 U
[t+T ]
ii

]
and

Fji = (1− δ)

[
T−1∑
t=1

δt−1 U
[t]
ji + δT−1U

[T ]
ji − δT c

]
+ δTFji

so

Fii ≥ (1− δ)

[
T−1∑
t=1

δt−1 U
[t]
ii + δT−1b

]
+ δTb

Fji ≤ (1− δ)

[
T−1∑
t=1

δt−1 U
[t]
ji + δT−1B− δT c

]
+ δTB

and

Fii − Fji ≥ δT
[
(1− δ)c − B− b

δ

]
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Consequently, for c > B−b
δ(1−δ) we have Fii > Fji, so i is path-protecting.

Proof of lemma 4.2. For any sequence Φ of length T ≥ 1, let V (Φ) be defined as in (11):

V (Φ) =
1− δ

1− δT

T∑
t=1

δt−1 U(Φ[t]),

and define

Vc(Φ) =
1− δ

1− δT

[
T∑
t=1

δt−1 U(Φ[t])− δT c

]
.

If Φ is empty (if its length is T = 0) let V (Φ) = 0. Then

Fji = (1− δT0)V (Φ0) + δT0V (Φp), and

Fj2i =
(1− δT0)V (Φ0) + δT0(1− δk Tp)V (Φp) + δT0+k Tp(1− δT1)Vc(Φ1)

1− δT0+k Tp+T1
, so

Fj2i−Fji =
δT0+kTp

1− δT0+kTp+T1

[
δT1(1− δT0)V (Φ0)− (1− δTo+T1)V (Φp) + (1− δT1)Vc(Φ1)

]
.

It is clear from this last expression that the sign of Fj2i − Fji does not depend on k,
which proves the result.

Proof of proposition 6. Let i be a k-period trust-building grim strategy with path a
[1,∞]
ii =

(DD)k(CC)∞. The payoff to any strategy that deviates against i during the trust-
building phase (either by playing C or leaving) is clearly lower than Fii. Idem for
strategies that play C after the trust-building phase and leave at period T > k. Addi-
tionally, the payoff to a strategy that plays D at period T1 ≥ k+ 1 and leaves at period
T2 ≥ T1 is bounded by that of a strategy that keeps playing D after T1 and leaves at T2.
Let j be one of the latter strategies, then

Fji =
1− δ

1− δT2

 k∑
t=1

δt−1 UDD +

T1−1∑
t=k+1

δt−1 UCC + δT1−1 UDC +

T2∑
t=T1+1

δt−1 UDD − δT2c


=

−δT2 (UDD + c(1− δ)) + δT1−1 (UDC − UCC + δ(UDD − UDC))

1− δT2

+
δk(UCC − UDD) + UDD

1− δT2
.

This payoff can be differentiated with respect to T2 to obtain

F ′
ji =

δT2

(1− δT2)2
A,
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where A is constant in T2. Therefore, Fji is either monotonically increasing or mono-
tonically decreasing in T2, which means that it is enough to compare i with strategies j
that deviate at period T1 playing D and leaving, or deviate playing D ad infinitum since
period T1.

For the first kind of strategies, lemma 4.2 leads to condition (7). For the second
kind,

Fji = δT1−1(UDC − UCC + δ(UDD − UDC)) + δk(UCC − UDD) + UDD,

and Fii > Fji is satisfied as long as δ > UDC−UCC
UDC−UDD

, since Fii = δk(UCC − UDD) + UDD.
Up to this point we have shown that the conditions in the proposition are sufficient
for i to be path-protecting. As in order to be path-protecting the path needs to be
protected against any path-deviator, including the strategies we have considered before,
the conditions are also necessary.
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