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Abstract

We consider a family of population game dynamics known as Best Experienced
Payoff Dynamics, under which each revising agent tests some of her possible strate-
gies a fixed number of times, with each play of each strategy being against a newly
drawn opponent, and chooses the strategy whose total payoff was highest, breaking
ties according to a given tie-breaking rule. Strict Nash equilibria are rest points of these
dynamics, but need not be stable. We provide some simple formulas and algorithms
to determine the stability or instability of strict Nash equilibria. JEL classification
numbers: C72, C73.
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1. Introduction

Most dynamics in Evolutionary Game Theory can be neatly seen as a combination of
a population game and a revision protocol (Sandholm, 2010). The population game assigns
to each population state a vector of payoffs, one for each strategy in the population. The
revision protocol specifies how agents, using the payoff assigned to each strategy, update
their current strategy. A crucial assumption embedded in this framework is that, at any
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population state, there is one single payoff assigned to each strategy. In population games
where agents are matched to play a symmetric normal form game, the payoff assigned to
each strategy is often the expected payoff the agent will obtain when using that strategy.
But how can agents know this expected payoff? Unless there is complete matching,
agents somehow know the exact population state, or agents are explicitly communicated
the precise expected payoff for each strategy, it seems unrealistic to assume that they
will all share exactly the same expectations for any given strategy. From this point of
view, it is noteworthy that many evolutionary dynamics from the economics literature
are informationally demanding in one important respect: they require agents to be fully
informed about the population’s current aggregate behavior. This assumption seems
rather strong in the large-populations contexts to which evolutionary models are most
naturally applied.

In many situations, it seems more natural to assume that agents acquire information
by interacting with only a sample of the population, rather than assuming that they have
access to accurate statistics of the whole population. There are two distinct lines of research
that follow this approach while keeping the assumption that agents respond optimally to
the information they have.

The first line assumes that agents take samples of the actions being played in the
population, and they use these samples to make inferences about the distribution of
actions in the whole population, and to best respond to the estimates thus formed. This is
the approach followed by Sandholm (2001), Kosfeld et al. (2002), Osborne and Rubinstein
(2003), Kreindler and Young (2013), Oyama et al. (2015), Heller and Mohlin (2018), Salant
and Cherry (2020), and Sawa and Wu (2021). Under this approach, note that agents must
be aware of the population game they are playing, so they can best reply to their point
estimates of the population distribution of actions.

A second approach –significantly less demanding on agents’ informational and com-
putational skills– was pioneered by Osborne and Rubinstein (1998) and Sethi (2000). Here,
revising agents try out a subset of the available strategies by playing them against ran-
domly drawn counterparts, and then choose the strategy that performed best in the test.
Crucially, each game is played against new randomly drawn counterparts, so sub-optimal
strategies may be selected in the test if they happened to be lucky in the random sampling
of co-players. In this approach, note that agents do not even need to know that they are
playing a game. Agents who follow this revision protocol are called procedurally ratio-
nal agents (Osborne and Rubinstein, 1998), and the evolutionary dynamics they produce
are the so-called Best Experienced Payoff (BEP) dynamics (Sandholm et al., 2019). These
dynamics are the main object of study in this paper.
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Procedurally rational agents and their associated equilibria have been used in a va-
riety of applications, including consumer choice procedures and product pricing strate-
gies (Spiegler, 2006a), markets with asymmetric information (Spiegler, 2006b), trust and
delegation of control (Rowthorn and Sethi, 2008), the Traveler’s Dilemma (Berkemer,
2008), market entry (Chmura and Güth, 2011), ultimatum bargaining (Miȩkisz and Ram-
sza, 2013), use of common-pool resources (Cárdenas et al., 2015), contributions to public
goods (Mantilla et al., 2020), the Centipede game (Sandholm et al., 2019; Izquierdo and
Izquierdo, 2021), the Prisoner’s Dilemma (Arigapudi et al., 2021), and coordination prob-
lems (Izquierdo et al., 2022). Sethi (2021) studies the equilibria of these processes in
symmetric, finitely repeated games, with several applications.

In BEP dynamics, strict Nash equilibria of a game correspond to states that are rest
points, but they may not be stable. Sandholm et al. (2020), building on Sethi’s (2000)
pioneering work, provide several sufficient conditions for instability and for asymptotic
stability of strict equilibria under BEP dynamics. Arigapudi et al. (2021) refine one of the
most general sufficient stability conditions in Sandholm et al. (2020), providing a tighter
one. While many of the stability and instability conditions in Sandholm et al. (2020) are
really simple and can be immediately checked from the payoffs of the game, the most
general stability condition (Theorem 2 II in Arigapudi et al. (2021)), and the most general
instability condition (Proposition 5.4 in Sandholm et al. (2020)) are –if taken at face value–
actually difficult to check, as they state a condition over all sets in a certain power set, or
require finding a subset that satisfies some condition. Here we show that these general
stability and instability conditions can be checked by conducting a simple analysis, whose
complexity is equivalent to carrying out an iterated elimination of dominated strategies,
and which admits a simple interpretation. We also provide some tighter tests for specific
BEP dynamics.

The rest of the paper is structured as follows. Section 2 contains a short introduction
to Best Experienced Payoff processes and their dynamics. In Section 3 we summarize
previous results on stability of strict equilibria, indicating also the new contributions in
this paper. Section 4 presents the new stability tests and formulas, and in Section 5 we
state some conclusions. The proofs, and some additional information, have been grouped
in an appendix.

2. Best experienced payoff protocols and dynamics

Although all our results can be easily extended to asymmetric games played in p
populations, for notational simplicity we keep our presentation to p-player symmetric
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games played in one population. Following Sandholm et al. (2020), we consider a unit-
mass population of agents who are matched to play a symmetric p-player normal form
game G = {S,U}. This game is defined by a strategy set S = {1, . . . ,n}, and a payoff function
U : Sp

→ R, where U(i; j1, . . . , jp−1) represents the payoff obtained by a strategy i player
whose opponents play strategies j1, . . . , jp−1. Our symmetry assumption requires that the
value of U not depend on the ordering of the last p − 1 arguments. When p = 2, we
sometimes write Ui j instead of U(i; j).

Aggregate behavior in the population is described by a population state x in the simplex
X = {x ∈ RS

+ :
∑

i∈S xi = 1}, with xi representing the fraction of agents in the population
using strategy i ∈ S. The standard basis vector ei ∈ X represents the pure (monomorphic)
state at which all agents play strategy i.

We consider Best Experienced Payoff (BEP) protocols defined by a triple (τ, κ, β). Under
BEP protocols, agents occasionally revise their current strategy by conducting tests of
alternative strategies.

The first parameter, namely the test-set rule τ, indicates how the set of strategies to be
tested is chosen. Specifically, here we consider the test-set rule τα, under which the revising
agent, when considering whether to change his current strategy, will also test other α − 1
randomly selected strategies in S (besides testing his current strategy). Naturally, α ∈ N
and 1 < α ≤ n. If all the strategies in S are tested, i.e. if α = n, we have the test-all rule,
denoted by τall.

The second parameter, called the number of trials κ ∈ N, specifies the number of times
that each strategy will be played in the test. Thus, each strategy in the test set will be
played by the revising agent overκmatches, with each match requiring a new independent
sampling of p − 1 co-players.

The last parameter in the BEP protocol, namely the tie-breaking rule β, indicates the
rule used to decide which strategy is selected when the best result (the best total payoff)
in the tests is obtained by more than one strategy. We will omit the last parameter when
our results are independent of the tie-breaking rule. Otherwise, we will focus on two
tie-breaking rules. The uniform-if-tie rule, βunif, selects any of the strategies that obtain
the best total payoff in the tests, each of these strategies with equal probability. This is
the rule that has been considered in almost all cases in the literature. The stick-if-tie rule,
βstick, chooses to keep using the current strategy if it obtains the best total payoff in the
tests, and, otherwise, it breaks ties by random uniform selection among the strategies that
obtained the best total payoff.

Well-known results of Benaı̈m and Weibull (2003) show that the behavior of a large but
finite population following the procedure above is closely approximated by the solution of
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the associated mean dynamic, a differential equation which describes the expected motion
of the population from each state. This mean dynamic for BEP processes is (Sethi, 2000):

ẋi = wi(x) − xi

where wi(x) is the probability with which strategy i is selected by a revising agent, i.e.,
the probability that it is tested, it obtains the best total payoff, and, if there are ties, it is
selected by the tie-breaking rule. The calculation of the term wi(x), i.e. the mean dynamic,
for BEP(τα, κ, β) processes, was formalized by Sandholm et al. (2020).

3. Stability and instability under BEP dynamics. Antecedents
and contribution

Consider a strict strategy s in a symmetric p-player game, i.e., a strategy s such that
the strategy profile (s, s, ..., s) is a strict Nash equilibrium of the game. Following Osborne
and Rubinstein’s (1998) pioneering study of rest points of the BEP(τall, κ, βunif) dynamic,
and Sethi’s (2000) stability analysis of the BEP(τall, 1, βunif) dynamic, Sandholm et al. (2020)
show that the linear stability analysis of an equilibrium state es – a monomorphic state
where all players use the same strict strategy s – under any BEP(τ, κ, β) dynamic, can be
reduced to the analysis of an n × n matrix Vκ,s = (vκ,si j ) of total payoffs vκ,si j , defined by

vκ,si j = (κ − 1)U(i; s, s, ..., s) + U(i; j, s, ..., s)

To simplify the notation, we will drop the superindex s when it is clear that we are refering
to a specific equilibrium strategy s, in which case we will use Vκ and vκi j. The Jacobian of
the dynamics at the equilibrium s can be calculated from the terms in Vκ. The term vκi j

is the total payoff to strategy i when, over its κ trials, it meets exclusively players using
the strict Nash strategy s, except in one trial, where exactly one of the (p − 1) co-players
uses strategy j. The reason why these are the only relevant payoffs for a linear stability
analysis is that, in the proximity of the strict equilibrium, where xs = 1− ε, the probability
of any random sample of ακ (p − 1) co-players with more than one co-player choosing a
strategy other than s is O(ε2).

Thus, when α strategies are tested, the relevant sampling events are:

i) Those in which all the ακ (p − 1) randomly sampled co-players use strategy s. In
this case, a test of strategy s provides the total payoff vκss and a test of strategy i , s
provides the total payoff vκis. Since s is a strict Nash strategy, vκss > vκis , so, if strategy s
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is in the test set, then it will be selected.

ii) Those in which all but one of the sampled co-players use strategy s and exactly one
co-player (the ”deviating co-player”) uses strategy j , s. Assuming all strategies are
tested:

• If the deviating co-player is met when testing strategy s, the total payoffs are vκsj

and {vκis}i∈Sr{s}. Defining S2 ≡ argmaxi,s vκis = argmaxi,s U(i; s, s, ..., s), we have that
either the selected strategy belongs to S2, or the selected strategy is s, depending
on the comparison of vκsj and vκts ≡ maxi,s vκis. In case of equality, the tie-breaking
rule would apply.

• If the deviating co-player is met when testing strategy i , s, the total payoffs
are vκss, vκi j and {vκks}k∈Sr{s,i}. Since every element in {vκks}k∈Sr{s,i} is less than vκss, the
selected strategy is either s or i, depending on the comparison of vκss and vκi j. In
case of equality, the tie-breaking rule would apply.

To analyze the stability of a strict equilibrium state es, Sandholm et al. (2020) consider
a change of variables that takes es to the origin 0 (by eliminating the coordinate xs, given
that

∑n
i=1 xi = 1) and show that the Jacobian of the dynamics at the origin is DW(0) =

DW+(0) − I(n−1)×(n−1), where DW+(0) is a matrix of non-negative terms that can be easily
calculated from the terms in Vκ, following the previous discussion.

3.1 Instability

A series of instability results (i.e. sufficient instability conditions) can be derived from
the analysis of Vκ by considering that the Perron-Frobenius eigenvalue of DW+(0) is at least
as large as the Perron-Frobenius eigenvalue of any principal submatrix of DW+(0), which
is in turn bounded from below by the minimum sum of the elements in each of its columns
(or rows). If the Perron-Frobenius eigenvalue of DW+(0) is greater than 1, then DW(0)
has a real positive eigenvalue1 and, consequently, es is unstable. A general condition
that guarantees instability following this approach is provided by Proposition 5.4 (ii) in
Sandholm et al. (2020), which states that es is linearly unstable under any BEP(τα, κ, β)
dynamic if, for some nonempty J ⊆ S r {s},

(p − 1)κ
α − 1
n − 1

∑
i∈J

1[vκi j > vκss] + 1[S2 ⊆ J] 1[vκsj < vκts]

 > 1 for all j ∈ J,

1If λ is an eigenvalue of DW+(0), then λ − 1 is an eigenvalue of DW(0).
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where 1[·] denotes the indicator function. As, under BEP(τall, κ, β) dynamics (i.e., for
α = n) and given a subset of strategies J ⊆ S r {s}, this result considers a tight bound on
the column sums of the submatrix of DW+(0) corresponding to the strategies in J,2 this is,
up to our knowledge, the most general available result that guarantees instability under
BEP(τall, κ, β) dynamics (for any tie-breaking rule) with either κ > 1 or p > 2.

3.2 Stability

A series of stability results (i.e. sufficient stability conditions) can also be derived from
the analysis of Vκ by considering that, if DW+(0) is a triangular matrix, its eigenvalues
are its diagonal elements. If the eigenvalues of DW+(0) are all less than one, then the
eigenvalues of DW(0) are all negative and, consequently, es is stable. This can be used to
show, for instance, that, under any BEP(τα, κ, β) dynamics, any strict equilibrium state is
asymptotically stable if the number of trials is larger than a certain threshold (Sandholm
et al., 2020, Corollary 5.8).

Under BEP(τall, κ) dynamics, the most general condition that guarantees that the Jaco-
bian of DW+(0) can be arranged as a triangular matrix whose diagonal elements are 0 is
the existence of an ordering of the strategies in S such that, for all i, j , s with i ≥ j we
have: vκss > vκi j and, if i ∈ S2, vκsj > vκis. This is a refinement of Proposition 5.9 in Sandholm
et al. (2020) that can be shown to be equivalent to the sufficient condition for asymptotic
stability in Theorem 2 (II) in Arigapudi et al. (2021).

Arigapudi et al. (2021) focus on the BEP(τall, κ) dynamic and on a family of games that
satisfy a specific genericity requirement, which here we term κ-generic games (Arigapudi
et al., 2021, Definition 4). They show that their sufficient stability condition for asymptotic
stability of of strict Nash equilibria is both sufficient and necessary in κ-generic games
with either more than two players (p > 2) or more than one test of each strategy (κ > 1).
However, this stability condition is difficult to check if followed literally, since it involves
testing a requirement on each and every set in the power set of S r {s}. The requirement
of having a κ-generic game can also be too stringent in practical cases, as it may not be
satisfied even by two-player games with generic payoff matrices. As an illustration, none
of the more than 20 numeric examples in Osborne and Rubinstein (1998), Sethi (2000),
Sandholm et al. (2019, 2020), Sethi (2021) and Arigapudi et al. (2021) are κ-generic.

3.3 Contribution

In this paper we:

2See note at the beginning of appendix A.2.
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i) Show that the general sufficient condition for instability of strict equilibria indicated
above (Sandholm et al., 2020, Proposition 5.4 (ii)), which applies under any BEP(τα, κ)
dynamics, can be checked using a simple algorithm. The complexity of this algorithm
is equivalent to performing an iterated elimination of dominated strategies.

ii) Show that a similarly simple algorithm can be used to check the general sufficient
condition for asymptotic stability of strict equilibria under BEP(τall, κ) dynamics in-
dicated in Section 3.23, i.e., the most general condition that guarantees, under any
tie-breaking rule, a triangular Jacobian DW(0) with diagonal values (i.e. eigenvalues)
equal to −1. We also provide a tighter stability test under the specific tie-breaking
rule βstick, a rule that favors stability under BEP(τall, κ) dynamics.

iii) Discuss conditions under which the sufficient condition for asymptotic stability in
ii) is also necessary for stability, for different BEP(τall, κ) dynamics. This extends
the results by Arigapudi et al. (2021) by removing the constraint that the game be
κ-generic.

4. Stability and instability tests

4.1 s-stabilizing and potentially s-stabilizing strategies

In this section we define s-stabilizing and potentially s-stabilizing strategies in subsets
J ⊆ S r {s}. Informally, a s-stabilizing strategy in J is a strategy that, under a BEP(τall, κ)
dynamic, does not contribute to the growth of the fraction of players using the strategies
in J, when the population state is close to the strict equilibrium state s. In contrast,
if a strategy is not potentially s-stabilizing, it is associated to at least some minimum
contribution to the growth of the fraction of players using the strategies in J, when the
population state is close to the strict equilibrium state s, under any BEP(τα, κ) dynamic.

Definition (s-stabilizing and potentially s-stabilizing strategies). Let S2 be the set of
strategies that obtain the second-best payoff, vκts, when playing against s-players, i.e.,
S2 ≡ argmaxi,s vκis = argmaxi,s U(i; s, s, ..., s), and vκts ≡ maxi,s vκis. Let J be a non-empty set
J ⊆ S r {s}. A strategy j ∈ J is s-stabilizing in J, for a number of trials κ, if

• vκi j < vκss for all i ∈ J, and

• If S2 ∩ J , ∅, then vκsj > vκts.

3As indicated before, this is equivalent to the sufficient condition for asymptotic stability in Arigapudi
et al. (2021), Theorem 2, II.
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A strategy j ∈ J is potentially s-stabilizing in J, for a number of trials κ, if

• vκi j ≤ vκss, for all i ∈ J, and

• If S2 ⊆ J, then vκsj ≥ vκts. �

Clearly, every s-stabilizing strategy in J is potentially s-stabilizing in J. To understand
the previous conditions, consider a test of each strategy by a revising agent who, when
sampling the required nκ (p − 1) co-players, meets just once a deviating co-player not
using strategy s, but using strategy j ∈ J instead. The condition vκi j < vκss guarantees that, if
the deviating j-player is met when testing strategy i ∈ J, the total payoff vκi j to strategy i is
less than the total payoff vκss to strategy s, so strategy s is selected. Similarly, the condition
((S2 ∩ J , ∅) ⇒ vκsj > vκts) guarantees that, if the deviating j-player is met when testing
strategy s (in which case the two highest total payoffs are vκsj and vκts), no strategy i ∈ J
is selected. Under any BEP(τall, κ) dynamic, if a strategy j is s-stabilizing, then its total
(positive or destabilizing) contribution to the submatrix –corresponding to the strategies
in J– of the Jacobian of the dynamics at the equilibrium (specifically, its contribution to the
corresponding submatrix of DW+(0)), in the column corresponding to j, is zero. This fact
can be used to provide sufficient conditions for the asymptotic stability of the equilibrium.
Note that if a strategy is s-stabilizing in J for a number of trials κ0, then it is s-stabilizing
in J for any κ > κ0.

If a strategy j is not potentially s-stabilizing, then its (positive or destabilizing) contri-
bution to the submatrix of the Jacobian of the dynamics corresponding to the strategies
in J, in the column corresponding to j, is guaranteed to be above a certain threshold
value, under any BEP(τα, κ) dynamic. If no strategy in J is potentially s-stabilizing, the
fact that the sum of the positive contributions in every column of a principal submatrix of
the Jacobian is above a threshold value can be used to obtain a lower bound for the Per-
ron–Frobenius eigenvalue of the matrix, and to guarantee instability of the equilibrium.
Note that if a strategy is not potentially s-stabilizing in J for a number of trials κ0, then it
is not potentially s-stabilizing in J for any κ < κ0.

4.2 Instability under BEP(τα, κ) dynamics

Our first proposition shows that a tight sufficient test for instability of strict equilibria
under any BEP(τα, κ) dynamics can be carried out by analyzing the iterated elimination of
potentially s-stabilizing strategies in S r {s}. Although the process of iterated elimination
may be considered evident, a formal description can be found in appendix A.1. All the
proofs have been relegated to appendix A.2.
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Proposition 4.1. Let s be a strict equilibrium. Consider a BEP(τα, κ) dynamic with κ = κ0 >
n−1

(p−1)(α−1) . If some strategy survives the iterated elimination of potentially s-stabilizing strategies
in S r {s}, then state es is unstable for any κ satisfying n−1

(p−1)(α−1) < κ ≤ κ0.

Corollary 4.2. Let s be a strict equilibrium. Consider a BEP(τall, κ) dynamic with κ = κ0. If some
strategy survives the iterated elimination of potentially s-stabilizing strategies in Sr {s}, then state
es is unstable for any κ with 1 < κ ≤ κ0, and, if p > 2, also for κ = 1.

Example 4.1. Consider the game with payoff matrix

(1) A = Vκ=1 =


3 0 0
2 0 0
2 0 0

 , which leads to Vκ=2 =


6 3 3
4 2 2
4 2 2

 .
Corollary 4.2 shows that the equilibrium state e1 is unstable under BEP(τall, κ = 2)

dynamics. This can be proved by noting that, for κ = 2, strategies 2 and 3 survive the
iterated elimination of potentially 1-stabilizing strategies, since none of them is potentially
1-stabilizing in J = S r {s} = {2, 3}. This is so because, for s = 1 and j ∈ J, we have that
S2 = {2, 3} ⊆ J but vκ=2

1 j = 3 < 4 = vκ=2
t1 . However, for κ = 2, this game satisfies the necessary

conditions for asymptotic stability in Theorem 2 in Arigapudi et al. (2021), which are
not sufficient in this case, since the game is not κ-generic. Thus, Corollary 4.2 (and
Proposition 4.1, more generally) can be used to prove the instability of strict equilibria on
which Theorem 2 in Arigapudi et al. (2021) remains silent.

1

2 3

Isolated rest points (x) and eigenvalues (λi)

x1 x2 x3

1. 0 0

0.545 0.227 0.227

λ1 λ2

-1.00 1.00

-1.00 -0.798

(i) tie-breaking rule βunif

1

2 3

Isolated rest points (x) and eigenvalues (λi)

x1 x2 x3

0.547 0.226 0.226

1. 0 0

λ1 λ2

-0.878 -0.812

-1.00 1.00

Components of rest points

x1  0 && 0 ≤ x2 && x2 ≤ 1 && x3  1 - x2

(ii) tie-breaking rule βstick

Figure 1: BEP(τall, 2, β) dynamics in the game of Example 4.1 for two tie-breaking rules: βunif (left) and βstick

(right). All figures in this paper can be easily replicated using EvoDyn-3s (Izquierdo et al., 2018).
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Figure 1 shows the BEP(τall, 2, β) dynamics in the game of Example 4.1 for two tie-
breaking rules: βunif (left) and βstick (right). As proved above for any tie-breaking rule, it
can be seen that state e1 is unstable under both dynamics. _

4.3 Asymptotic stability under BEP(τall, κ) dynamics

Proposition 4.3. Let s be a strict equilibrium. Consider any BEP(τall, κ) dynamic with κ = κ0.
If no strategy survives the iterated elimination of s-stabilizing strategies in S r {s}, then state es is
asymptotically stable for any κ ≥ κ0.

For a fixed κ, the stability condition in Proposition 4.3 can be shown to be equivalent
to the stability condition in Arigapudi et al. (2021) [Theorem 2, II],4 so the former can be
seen as a quick and easy way of checking the latter. In terms of the complexity of checking
these conditions according to their formulation, Proposition 4.3 involves checking the
existence of s-stabilizing strategies in at most n− 1 subsets of S, while a direct check of the
stability condition in Arigapudi et al. (2021) involves checking an existence condition in
2n−1 subsets of S (in all the subsets of S r {s}). If, for instance, the number of strategies is
n = 11, the difference would be checking 10 subsets using Proposition 4.3 versus checking
210 = 1024 subsets otherwise.

Example 4.2. Consider the coordination game with payoff matrix

(2)



U11 0 0 ... 0
0 U22 0 ... 0

0 0 . . .
...

...
... U(n−1)(n−1) 0

0 0 ... 0 Unn


,

with Uss > 0 for all s ∈ S, so all strategies are strict Nash strategies. In this game, for
i, j ∈ Sr {s} and i , j, we have vκ,sss = κUss, vκ,ssj = (κ−1)Uss, vκ,sii = Uii and vκ,si j = 0. Therefore,
strategy j ∈ J ⊆ S r {s} is s-stabilizing in J if and only if the following two conditions are
satisfied:

• vκi j < vκss for all i ∈ J ⇔ U j j < κUss ⇔ κ >
U j j

Uss
.

4It is not difficult to show that the sufficient stability condition in Arigapudi et al. (2021) can be equiv-
alently formulated in terms of iterated elimination of strategies that are not weakly supported (according
to their definition) by any other strategy. This is so because if a strategy j is not weakly supported by any
strategy in a set J that includes j, then j is not weakly supported by any strategy in any subset of J that
includes j.
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• If S2 ∩ J , ∅ then vκsj > vκts ⇔ (κ − 1)Uss > 0 ⇔ κ > 1.

Thus, j ∈ J ⊆ Sr {s} is s-stabilizing in J if and only if κ > max
(U j j

Uss
, 1

)
. Similarly, it is easy

to check that strategy j ∈ J ⊆ S r {s} is potentially s-stabilizing in J if and only if κ ≥
U j j

Uss
.

Now, let Umax = maxi∈S Uii be the highest possible payoff and let Smax = {i ∈ S | Uii =

Umax} be the set of strategies that obtain the highest possible payoff in the game when
playing against themselves.

Applying Proposition 4.3, we can deduce that, for any strict strategy s ∈ S, state es is
asymptotically stable under any BEP(τall, κ) for every κ > Umax

Uss
, since this condition guar-

antees that all strategies are s-stabilizing, so no strategy survives the iterated elimination
of s-stabilizing strategies. In particular, if s ∈ Smax, es is asymptotically stable for every
κ > Umax

Umax
= 1.

Applying Corollary 4.2, we can deduce that if s < Smax, state es is unstable under
any BEP(τall, κ) for every 1 < κ < Umax

Uss
, since this condition guarantees that any strategy

i ∈ Smax is not potentially s-stabilizing in any subset that contains it, so it survives the
iterated elimination of potentially s-stabilizing strategies in S r {s}.

So, to sum up, in coordination game (2) with Uss > 0 for all s ∈ S, under any BEP(τall, κ)
with κ > 1, es is asymptotically stable for κ > Umax

Uss
and es is unstable for 1 < κ < Umax

Uss
.

The stability of es in the remaining cases, i.e. for κ = 1 and for κ = Umax
Uss

(if Umax
Uss
∈ N),

depends on the tie-breaking rule.

1

2 3

Isolated rest points (x) and eigenvalues (λi)

x1 x2 x3

0 0 1.

0 1. 0

1. 0 0

0.0142 0.731 0.255

λ1 λ2

-1.00 -1.00

-1.00 -1.00

1.00 0

-0.868 0.612

(i) κ = 2

1

2 3

Isolated rest points (x) and eigenvalues (λi)

x1 x2 x3

0 0 1.

0 1. 0

1. 0 0

0.000816 0.668 0.331

0.912 0.0000148 0.0882

λ1 λ2

-1.00 -1.00

-1.00 -1.00

-1.00 -1.00

1.15 -0.985

-0.939 0.780

(ii) κ = 4

Figure 2: Coordination game (2) with n = 3 strategies, where Uii = i, under BEP(τall, κ, βunif) dynamics, for
κ = 2 (left) and κ = 4 (right).

Figure 2 illustrates these results by showing the BEP(τall, κ, βunif) dynamics in the
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coordination game (2) with n = 3 strategies and Uii = i. For κ = 2, e1 is unstable (since
1 < κ < Umax

Uss
= 3

1 = 3), e2 is asymptotically stable (since κ > Umax
Uss

= 3
2 = 1.5), and e3 is

asymptotically stable (since s = 3 ∈ Smax and κ > 1). For κ ≥ 4, e1 becomes asymptotically
stable too (since κ > Umax

Uss
= 3

1 = 3). _

4.4 Stability under BEP(τall, κ, βunif) dynamics

In this section we study whether the lack of fulfillment of the sufficient condition
for asymptotic stability in Proposition 4.3 can guarantee instability. Arigapudi et al.
(2021) show that, for BEP(τall, κ) dynamics with either κ > 1 or p > 2, a sufficient stability
condition that is equivalent to Proposition 4.3, is both sufficient and necessary in κ-generic
games. However, the requirement of being κ-generic can be quite restrictive in practice,
as pointed out in Section 3.

Here we remove the genericity condition and focus on BEP(τall, κ, βunif) dynamics in
any game, given that this is the BEP dynamics considered in most previous studies in the
literature. In the next section, we will also consider BEP(τall, κ, βstick) dynamics, as this
alternative tie-breaking rule can be regarded as more natural in many cases.

For BEP(τall, κ, βunif) dynamics, we show that the sufficient condition for asymptotic
stability in Proposition 4.3 is also necessary for stability for any κ > n; more tightly, for
any κ > |S2|+1

p−1 . If the second-best payoff when playing against s-players is obtained by a
single strategy (i.e., if |S2| = 1),5 then this property holds for any κ > 2 (for any κ, if p > 3).

While the sufficient condition for instability in Proposition 4.1 will usually be tighter
than the lack of fulfillment of the stability condition in Proposition 4.3, our next result (i.e.
Proposition 4.4) is relevant because it shows that in BEP(τall, κ, βunif) dynamics, beyond
some small values of κ, and as κ grows, we will find either permanent asymptotic stability
or a single transition from instability to permanent asymptotic stability. A transition
from stability to instability can only happen within the small values of κ indicated in the
proposition.

Proposition 4.4. Let s be a strict equilibrium and let S2 = argmaxi,s U(i; s, s, ..., s). Consider
any BEP(τall, κ, βunif) dynamic with κ = κ0. If no strategy survives the iterated elimination of
s-stabilizing strategies in S r {s}, state es is asymptotically stable for any κ ≥ κ0. Otherwise, it is

unstable for any κwith |S2|+1
p−1 < κ ≤ κ0, and also for any κ > 2

p−1 satisfying
v1

ss−min j∈Sr{s} v1
sj

v1
ss−v1

ts
< κ ≤ κ0.

5Note that the condition |S2| = 1 is much weaker than the condition that a game has to satisfy in order to
be κ-generic.
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Example 4.3. Consider the BEP(τall, κ, βunif) dynamic on the coordination game with payoff

matrix (2), with Uss > 0 for all s ∈ S. Recall that Umax = maxi∈S Uii and Smax = {i ∈ S | Uii =

Umax}.
In addition to what we inferred in Example 4.2 for any BEP(τall, κ) dynamic, applying

Proposition 4.4 we can address the stability of es<Smax for κ = Umax
Uss

under BEP(τall, κ, βunif).
We could not do this using Corollary 4.2 because this stability depends on the tie-breaking
rule. Here we deduce that if s < Smax, state es is unstable under BEP(τall, κ, βunif) for any
κ ≤ Umax

Uss
, assuming κ > 2.

In Example 4.2 we showed that, in this game, j ∈ J ⊆ S r {s} is s-stabilizing in J if and
only if κ > max

(U j j

Uss
, 1

)
. Thus, if s < Smax and κ ≤ Umax

Uss
, any strategy i ∈ Smax survives

the iterated elimination of s-stabilizing strategies in S r {s} so, applying Proposition 4.4

and noting that
v1

ss−min j∈Sr{s} v1
sj

v1
ss−v1

ts
= Uss−0

Uss−0 = 1 and p = 2, we can state that es is unstable for any

κ ≤ Umax
Uss

, assuming κ > 2
p−1 = 2.

Figure 2 shows the BEP(τall, κ, βunif) dynamics in the coordination game (2) with n = 3
strategies and Uii = i. For κ = 3, e1 is unstable (since κ ≤ Umax

Uss
= 3

1 = 3), while for κ ≥ 4,
e1 is asymptotically stable (since κ > Umax

Uss
= 3

1 = 3). _

1

2 3

Isolated rest points (x) and eigenvalues (λi)

x1 x2 x3

0 0 1.

0 1. 0

1. 0 0

0.00359 0.679 0.318

λ1 λ2

-1.00 -1.00

-1.00 -1.00

-1.00 0.500

-0.952 0.915

(i) κ = 3

1

2 3

Isolated rest points (x) and eigenvalues (λi)

x1 x2 x3

0 0 1.

0 1. 0

1. 0 0

0.000816 0.668 0.331

0.912 0.0000148 0.0882

λ1 λ2

-1.00 -1.00

-1.00 -1.00

-1.00 -1.00

1.15 -0.985

-0.939 0.780

(ii) κ = 4

Figure 3: Coordination game (2) with n = 3 strategies, where Uii = i, under BEP(τall, κ, βunif) dynamics, for
κ = 3 (left) and κ = 4 (right).

4.5 Stability under BEP(τall, κ, βstick) dynamics

For BEP(τall, κ, βstick) dynamics, here we provide an improved sufficient condition for
asymptotic stability, tighter than Proposition 4.3, and prove that this sufficient condition

–14–



for asymptotic stability is also necessary for stability for any κ > |S2|

p−1 . If the second-best
payoff when playing against s-players is obtained by a single strategy (i.e., |S2| = 1), then
this condition holds for any κ > 1 (for any κ, if p > 2). To show this, first we need to define
weakly s-stabilizing strategies.

Definition (Weakly s-stabilizing strategies). We say that a strategy j ∈ J is weakly s-
stabilizing in J, for a number of trials κ, if

• vκi j ≤ vκss for all i ∈ J, and

• If S2 ∩ J , ∅, then vκsj ≥ vκts. �

Any s-stabilizing strategy in J is weakly s-stabilizing in J, so if the iterated elimina-
tion of s-stabilizing strategies in S2 r {s} eliminates all strategies (proving stability under
BEP(τall, κ) dynamics), so does the iterated elimination of weakly s-stabilizing strategies.
The second process, however, can prove stability under BEP(τall, κ, βstick) dynamics in
additional cases. We illustrate this fact in Example 4.4 (also, compare Figure 3(i) vs
Figure 4(ii)).

Proposition 4.5. Let s be a strict equilibrium and let S2 = argmaxi,s U(i; s, s, ..., s). Consider any
BEP(τall, κ, βstick) dynamic with κ = κ0. If no strategy survives the iterated elimination of weakly
s-stabilizing strategies in S r {s}, then state es is asymptotically stable for any κ ≥ κ0. Otherwise,

it is unstable for any κ with |S2|

p−1 < κ ≤ κ0, and also for any κ > 1
p−1 with

v1
ss−min j∈Sr{s} v1

sj

v1
ss−v1

ts
< κ ≤ κ0.

Note that, if |S2| = 1, then the condition κ > |S2|

p−1 holds for any κ > 1 (for any κ, if p > 2).

Example 4.4. Consider the BEP(τall, κ, βstick) dynamic on the coordination game with payoff

matrix (2), with Uss > 0 for all s ∈ S. Recall that Umax = maxi∈S Uii and Smax = {i ∈ S | Uii =

Umax}.
In Example 4.2 we showed that, in this game, j ∈ J ⊆ S r {s} is s-stabilizing in J if and

only if κ > max
(U j j

Uss
, 1

)
. Following the same reasoning, it is easy to check that j ∈ J ⊆ Sr {s}

is weakly s-stabilizing in J if and only if κ ≥
U j j

Uss
.

Applying Proposition 4.5, we can then deduce that state es is asymptotically stable for
every κ ≥ Umax

Uss
, since this condition guarantees that all strategies are weakly s-stabilizing,

so no strategy survives the iterated elimination of weakly s-stabilizing strategies. In
particular, if s ∈ Smax, es is asymptotically stable for every κ ≥ Umax

Umax
= 1. If s < Smax and κ <

Umax
Uss

, any strategy i ∈ Smax is not weakly s-stabilizing, so it survives the iterated elimination

of weakly s-stabilizing strategies in S r {s}. Therefore, noting that
v1

ss−min j∈Sr{s} v1
sj

v1
ss−v1

ts
= Uss−0

Uss−0 = 1

and p = 2, we can state that es is unstable for any κ such that 1
p−1 = 1 < κ < Umax

Uss
.
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1

2 3

Isolated rest points (x) and eigenvalues (λi)

x1 x2 x3

0 0 1.

0 1. 0

0 0.726 0.274

1. 0 0

0.802 0.198 0

λ1 λ2

-1.00 -1.00

-1.00 -1.00

-0.881 0.642

-1.00 1.00

0.947 0.657

(i) κ = 2

1

2 3

Isolated rest points (x) and eigenvalues (λi)

x1 x2 x3

0 0 1.

0 1. 0

0 0.668 0.332

1. 0 0

0.914 0 0.0859

0.769 0.231 0

λ1 λ2

-1.00 -1.00

-1.00 -1.00

1.02 -0.956

-1.00 -1.00

-0.931 0.745

0.918 0.556

(ii) κ = 3

Figure 4: Coordination game (2) with n = 3 strategies, where Uii = i, under BEP(τall, κ, βstick) dynamics, for
κ = 2 (left) and κ = 3 (right).

To sum up, under BEP(τall, κ, βstick), es is asymptotically stable if κ ≥ Umax
Uss

, and unstable
if 1 < κ < Umax

Uss
. In particular, if s ∈ Smax, then es is asymptotically stable for every κ.

Figure 4 shows the BEP(τall, κ, βstick) dynamics in the coordination game (2) with n = 3
strategies and Uii = i. For κ = 2, e1 is unstable (since 1 < κ < Umax

Uss
= 3

1 = 3), e2 is
asymptotically stable (since κ ≥ Umax

Uss
= 3

2 = 1.5), and e3 is asymptotically stable (since
s = 3 ∈ Smax). For κ ≥ 3, e1 is also asymptotically stable (since κ ≥ Umax

Uss
= 3

1 = 3). _

5. Conclusions

Strict Nash equilibria correspond to rest points under Best Experienced Payoff dynam-
ics, but these rest points may be unstable. In this paper we provide a simple test, with
a simple interpretation, that guarantees asymptotic stability under BEP(τall, κ) dynamics.
We also provide a related simple test that guarantees instability of strict equilibria under
the more general family of BEP(τα, κ) dynamics. Focusing on BEP(τall, κ, βunif) dynamics,
which is the family of BEP dynamics most prevalent in the literature, we provide a stability
test which, for values of κ above a small threshold value κ1 ≤ n, proves either asymptotic
stability or, otherwise, instability. We also show that, as κ increases, and for κ > n, any
strict equilibrium is either always asymptotically stable or there is a single transition from
instability to asymptotic stability, within a bounded range of values of κ. Sandholm et al.
(2020) provide bounds on the values of κ that guarantee asymptotic stability. Similar re-
sults are obtained for the BEP(τall, κ, βstick) dynamic, for which we present an even tighter
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asymptotic stability test.

A. Appendix

A.1 Iterated elimination of strategies

Definition (Survivors of iterated elimination of strategies satisfying conditionC in a finite
set Ω). Let J0

≡ Ω and define Jm recursively by Jm = {i ∈ Jm−1
| i does not satisfy condition C in Jm−1

}.
The (potentially empty) set J|Ω| is the set of strategies that survive iterated elimination of
strategies satisfying condition C in set Ω. An algorithm for this procedure is described in
Algorithm 1.

Algorithm 1 Iterated elimination of strategies satisfying condition C in set Ω

J← Ω
while ∃ j ∈ J | j satisfies condition C in J do

J← J r { j ∈ J | j satisfies condition C in J}
end while . J at the end is the set of all surviving strategies after iterated elimination

A.2 Proofs

Note. Bound on the Perron-Frobenius eigenvalue of DW+(0) under BEP(τall, κ) dynamics, based
on a submatrix of DW+(0).

Under BEP(τall, κ) dynamics, the inflow (positive) terms in column j of DW+(0) are
associated to 1[vκi j > vκss], 1[vκts > vκsj], 1[vκi j = vκss] or 1[vκts = vκsj], when the corresponding
cases hold, i.e., when the indicator function takes the value 1. The inflow associated to
the last two terms, 1[vκi j = vκss] and 1[vκts = vκsj], is anyway 0 under tie-breaking rules that
always select the agent’s current strategy if it is among the optimal tested strategies (such
as βstick). In this case, the less favorable for the instability of s, the inflow (positive) terms
in column j of DW+(0) are (p − 1)κ 1[vκi j > vκss], at position DW+

i j(0), plus a total inflow
of (p − 1)κ 1[vκts > vκsj] distributed (according to the tie-breaking rule) among the rows of
DW+(0) corresponding to the strategies in S2. Consequently, given a subset J ⊆ S r {s}
and considering its associated submatrix DW+

J (0), corresponding to the strategies in J, the
largest value that we can guarantee for the sum of the terms in the column of DW+

J (0)
corresponding to strategy j is (p − 1)κ

∑
i∈J 1[vκi j > vκss], plus, if S2 ⊆ J, (p − 1)κ 1[vκts > vκsj].

For κ > n−1
(p−1)(α−1) , it can be shown, following arguments similar to the proof of fact 2 in

Arigapudi et al. (2021), that proposition 5.4 (ii) in Sandholm et al. (2020), which is based
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on the bound discussed here (by columns), is more general than proposition 5.4 (i), which
is based on a bound by rows considering only the terms 1[vκi j > vκss]. �

Proof of Proposition 4.1. Considering κ = κ0, if the iterated elimination of potentially s-
stabilizing strategies does not eliminate all strategies in S r {s}, then there is some non-
empty set J ⊆ S r {s} which does not contain any potentially s-stabilizing strategies. This
implies that for every j ∈ J, either ∃i ∈ J such that vκi j > vκss or (S2 ⊆ J and vκsj < vκts).
With these conditions, proposition 5.4 of Sandholm et al. (2020) guarantees instability of
the strict equilibrium if κ > n−1

(p−1)(α−1) . The extension to κ < κ0 comes from the fact that
if a strategy is not potentially s-stabilizing in J for a number of trials κ0, then it is not
potentially s-stabilizing in J for any κ < κ0. �

Proof of Proposition 4.3. Following Sandholm et al. (2020), consider a change of variables
for the population state (x1, x2, ..., xn) that sends the equilibrium es to the origin 0, by
eliminating the coordinate xs while keeping the labeling of the other coordinates. In this
system, consider the Jacobian of the dynamics at the equilibrium, DW(0). Let DWJ(0) be
the square submatrix of DW(0) whose rows and columns correspond to the strategies in
J. If j is s-stabilizing in J for κ = κ0, then the column of DWJ(0) corresponding to strategy
j is made up (see Sandholm et al. (2020)) by zeros in all non-diagonal positions, with a
value −1 at the diagonal position. Let ( j1, j2, ..., jn−1) be an ordering of the (n− 1) strategies
in S r {s} that iteratively eliminates s-stabilizing strategies. Then the column of DW(0)
corresponding to strategy j1 is made up by zeros in all non-diagonal positions, with a
value −1 at the diagonal position. Considering the cofactor expansion of the determinant
of the jacobian along the column corresponding to j1, and denoting by DW−{ j1}(0) the
submatrix of DW(0) obtained by eliminating the column and row corresponding to j1,
we have that |DW(0)| = (−1) |DW−{ j1}(0)|. Now, the column of DW−{ j1}(0) corresponding
to strategy j2 is made up by zeros in all non-diagonal positions, with a value −1 at the
diagonal position. Proceeding secuentially with the other strategies we obtain |DW(0)| =
(−1) |DW−{ j1}(0)| = (−1)2

|DW−{ j1, j2}(0)| = ... = (−1)n−1, i.e., all the eigenvalues of the Jacobian
have negative real parts, which implies asymptotic stability of the equilibrium. The result
for κ ≥ κ0 follows from the fact that if a strategy is s-stabilizing in J for a number of trials
κ0, then it is s-stabilizing in J for any κ > κ0. �

Proof of Proposition 4.4. The stability part comes from Proposition 4.3. For the instability
part, first consider κ = κ0. If the iterated elimination of s-stabilizing strategies does not
eliminate all strategies in S r {s}, then there is some non-empty set J ⊆ S r {s} which does
not contain any s-stabilizing strategies. This means that for every j ∈ J, either ∃i ∈ J such
that vκi j ≥ vκss or (S2 ∩ J , ∅ and vκsj ≤ vκts). Considering this and Lemma A.1 below, which
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is a direct adaptation of proposition 5.4 in Sandholm et al. (2020) for the BEP(τall, κ, βunif)
dynamic, we have that the minimum possible value of the left hand side on Equation (3)

is (p − 1)κ 1
|S2|+1 , so the condition κ > |S2|+1

p−1 guarantees instability. If
v1

ss−min j∈Sr{s} v1
sj

v1
ss−v1

ts
< κ, then

vκsj > vκts for all j , s and the minimum possible value indicated before is (p − 1)κ 1
2 , so the

condition κ > 2
p−1 guarantees instability. The extension to κ < κ0 comes from the fact that

if a strategy is not s-stabilizing in J for a number of trials κ0, then it is not s-stabilizing in J
for any κ < κ0.

Lemma A.1. Let s be a strict equilibrium, let S2 = argmaxi,s U(i; s, s, ..., s), and let t ∈ S2. Under
any BEP(τall, κ, βunif) dynamic, state es is linearly unstable if, for some nonempty J ⊆ S r {s}, the
following condition holds for all j ∈ J:

(p − 1)κ

∑
i∈J

1[vκi j > vκss] + 1
2

∑
i∈J

1[vκi j = vκss]

(3)

+ (p − 1)κ |S2 ∩ J|
(

1
|S2|

1[vκsj < vκts] + 1
|S2|+11[vκsj = vκts]

)
> 1

�

Proof of Proposition 4.5. The stability part comes from adapting the proof of Proposi-
tion 4.3 to the BEP(τall, κ, βstick) dynamic, considering that the Jacobian DW(0) for the
BEP(τall, κ, βstick) dynamic has components (Sandholm et al., 2020):

DWi j(0) =

(p − 1)κ 1[vκi j > vκss] − 1[ j = i] if i < S2,

(p − 1)κ
(
1[vκi j > vκss] + 1

|S2|
1[vκis > vκsj]

)
− 1[ j = i] if i ∈ S2.

For the instability part follow the steps in the proof of Proposition 4.4, noting that if a
non-empty set J ⊆ S r {s} does not contain any weakly s-stabilizing strategies, then, for
every j ∈ J, either ∃i ∈ J such that vκi j > vκss or (S2 ∩ J , ∅ and vκsj < vκts). Note also that the
equivalent of Equation (3) for the BEP(τall, κ, βstick) dynamic is

(p − 1)κ

∑
i∈J

1[vκi j > vκss] + |S2 ∩ J|
(

1
|S2|

1[vκsj < vκts]
) > 1

�
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