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Abstract

We consider population games played by procedurally rational players who, when
revising their current strategy, test each of their available strategies independently
in a series of random matches –i.e., a battery of tests–, and then choose the strategy
that performed best in this battery of tests. This revision protocol leads to the so-
called payoff-sampling dynamics (aka test-all Best Experienced Payoff dynamics).

In this paper we characterize the support of all the rest points of these dynamics
in any game and analyze the asymptotic stability of the faces to which they belong.
We do this by defining strategy sets closed under payoff sampling, and by proving
that the identification of these sets can be made in terms of simple comparisons
between some of the payoffs of the game.

JEL classification numbers: C72, C73.

Keywords: Payoff sampling; Best Experienced Payoff; Procedural rationality; Asymp-
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1 Introduction

In the context of players with bounded rationality or limited information, Osborne and
Rubinstein (1998) introduced a decision rule for procedurally rational players. In a
population game setting where players use pure strategies only (Sandholm, 2010), these
procedurally rational players revise their pure strategy –or action– as follows. They first
associate one payoff to each of their possible actions by –literally or virtually– conducting
a battery of tests. This battery of tests consists on testing each of their available actions
independently in κ matches or trials, with each trial involving a new set of randomly
drawn co-players from the population. Revising players then choose the action that
obtained the best average experienced payoff in the battery of tests.

An equilibrium under this procedure is a population state x such that the proportion
of players using each strategy i (i.e., xi) equals the probability of strategy i being selected

∗Correspondence to: Department of Industrial Organization, Universidad de Valladolid, Dr.
Mergelina s/n, 47011 Valladolid, Spain. e-mail : segis@eii.uva.es.
Abbreviations. BEP: Best Experienced Payoff; CUPS: Closed Under Payoff Sampling; CURB: Closed
Under Rational Behavior.
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as the best-experienced-payoff strategy in a κ-trial battery of tests conducted at state x.
Using wκi (x) to denote this probability, a population state x is an equilibrium under
procedural rationality if xi = wκi (x) for every strategy i.

This equilibrium has been named payoff-sampling equilibrium in the literature (see
e.g. Selten and Chmura (2008), Chmura and Güth (2011), Cárdenas et al. (2015), Sethi
(2021) and Arigapudi et al. (2021, 2022)). When defining this equilibrium, most authors
(e.g. Osborne and Rubinstein (1998); Selten and Chmura (2008); Cárdenas et al. (2015))
assume that ties are broken uniformly at random and use S(κ) to denote the resulting
(uniform) payoff-sampling equilibrium.1

Procedurally rational agents and their associated payoff-sampling equilibria have
been used in a variety of applications, including consumer choice procedures and prod-
uct pricing strategies (Spiegler, 2006a), markets with asymmetric information (Spiegler,
2006b), trust and delegation of control (Rowthorn and Sethi, 2008), the Traveler’s
Dilemma (Berkemer, 2008), market entry (Chmura and Güth, 2011), ultimatum bar-
gaining (Miȩkisz and Ramsza, 2013), use of common-pool resources (Cárdenas et al.,
2015), contributions to public goods (Mantilla et al., 2020), the Centipede game (Sand-
holm et al., 2019; Izquierdo and Izquierdo, 2021), the Prisoner’s Dilemma (Arigapudi
et al., 2021), coordination problems (Izquierdo et al., in press) and finitely repeated
games (Sethi, 2021).

Sethi (2000) introduced population dynamics based on the considered procedurally
rational agents. These dynamics, which have been called sampling dynamics (see e.g.
Miȩkisz and Ramsza (2013); Mantilla et al. (2020)) and payoff-sampling dynamics (see
e.g. Sethi (2021); Arigapudi et al. (2021, 2022)), take the form

ẋi = wκi (x)− xi, (1)

corresponding to a setting where agents occasionally and independently revise their
current strategy and, when revising, they adopt strategy i with probability wκi (x). The
process assumes a common rate of revision for every agent, so the “outflow” term for
i-strategists in (1) is proportional to their presence in the population, xi.

Sandholm et al. (2019) generalized payoff-sampling dynamics, allowing revising agents
to consider subsets of their available actions (rather than all available actions) and to
use different tie-breaking rules. This generalization led to the so-called family of Best
Experienced Payoff (BEP) protocols and their associated dynamics.

The procedurally rational players and S(κ) equilibria introduced by Osborne and
Rubinstein (1998) correspond to BEPall(κ, β

unif ) protocols, where the subscript all in-
dicates that all actions are tested, κ is the number of trials that each action is tested,
and βunif indicates that ties are resolved uniformly at random. We refer to these
BEPall(κ, β

unif ) protocols as uniform payoff-sampling protocols.
Sethi (2021) considers the family of regular tie-breaking rules βr, which are those

that place positive probability on choosing each of the actions that achieve the best-

1Sandholm et al. (2019, 2020), Arigapudi et al. (2021), and Sethi (2021) also consider other tie-
breaking rules.
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experienced-payoff in a battery of tests. We refer to the corresponding BEPall(κ, β
r)

protocols as regular payoff-sampling protocols.2

The protocols considered in this paper are BEPall(κ, β), i.e., we assume that revising
agents test all their available actions, and we allow for different number of trials κ and
different tie-breaking rules β. Henceforth we refer to these BEPall(κ, β) protocols simply
as payoff-sampling protocols. For brevity, we sometimes use BEPall for BEPall(κ, β).

The relationship between Nash equilibria and payoff-sampling equilibria is well under-
stood in the literature. Payoff-sampling equilibria are not necessarily Nash equilibria,
and vice versa. Nonetheless, Osborne and Rubinstein (1998) showed that every two-
player game has an S(κ) equilibrium, for any number of trials κ ∈ N, and that the limit
of convergent sequences of S(κ) equilibria as κ → ∞ is a Nash equilibrium. Sandholm
et al. (2020) extended these results to p-player games under any BEP protocol. We
also know that, under payoff-sampling dynamics, asymptotically stable states are not
necessarily Nash.3 This contrasts with most other evolutionary dynamics.4

The connection between strict Nash equilibria and payoff-sampling equilibria –and
their stability– is also well understood in the literature. Osborne and Rubinstein (1998)
showed that strict Nash profiles correspond to S(κ) equilibria, and that those are the
only monomorphic S(κ) equilibria, i.e., the only S(κ) equilibria in which all players in
each population use the same strategy. Sethi (2000) showed that strict Nash equilibria
may be dynamically stable or unstable under payoff-sampling dynamics with κ = 1; and
Sandholm et al. (2020) proved that, for a sufficiently large number of trials κ, strict Nash
equilibria are asymptotically stable under any BEP protocol. The stability of strict Nash
equilibria under payoff-sampling dynamics is also analyzed by Arigapudi et al. (2021)
and Izquierdo and Izquierdo (2022).

To our knowledge, besides their relationship with Nash and strict Nash equilibria,
there are no general results about the structure and stability of payoff-sampling equilibria
in the literature. In this paper, we shed some light on this issue. In particular, we provide
necessary and sufficient conditions to characterize the support of all payoff-sampling
equilibria and the dynamic stability of the faces to which they belong, in any game.

To illustrate this characterization, consider the following two-player symmetric game,
with strategy set {a, b, c} and payoff matrix (to the row player) E1:

2Note that βunif is a regular tie-breaking rule, so all uniform payoff-sampling protocols are regular.
3Sandholm et al. (2019) show that in the centipede game, for low number of trials κ, there is an

interior asymptotically stable state at which most players cooperate up until the last five stages of the
game.

4In weakly payoff positive selection dynamics (i.e. dynamics where at least one of the pure strategies
that obtains an expected payoff above average –assuming at least one such a strategy exists– has a
positive growth rate), only Nash states can be Lyapunov stable (Weibull, 1995, p. 151). In the standard
multi-population replicator dynamics, and in many other evolutionary dynamics, only strict Nash states
can be asymptotically stable (Eshel and Akin, 1983; Ritzberger and Vogelsberger, 1990; Ritzberger and
Weibull, 1995; Balkenborg and Schlag, 2007; Samuelson and Zhang, 1992).
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E1 =

a b c

a 1 0 0

b 0 1 8

c 0 2 1

Strategy a is a strict Nash strategy (i.e., (a, a) is a strict Nash profile) and, conse-
quently, for any κ, the population state (xa, xb, xc) = (1, 0, 0) is an S(κ) equilibrium.
Given that it is strict Nash, this equilibrium is asymptotically stable for sufficiently
large κ (Sandholm et al., 2020). Profiles (b, b) and (c, c) are not strict Nash, so the
monomorphic population states (0, 1, 0) and (0, 0, 1) are not S(κ) equilibria. An analy-
sis based on strict Nash equilibria would finish here.

Nonetheless, note that the subset of strategies H = {b, c} has an interesting property:
if your co-player is using any strategy in H, you are better off choosing a strategy in
H, rather than choosing any strategy not in H. Specifically, when testing each strategy
(κ times) against co-players using strategies in H, strategy a will obtain a total payoff
of 0, while strategies b and c will each obtain a total payoff of at least κ. Consequently,
at any state whose support is contained in H, the strategy selected by a revising agent
(i.e., the strategy that performs best in a battery of tests) will necessarily be in H. As
a consequence, we will prove later that, for any κ ∈ N, there is an S(κ) equilibrium
whose support is H (see fig. 1). Furthermore, for any κ > 1, the face spanned by H, i.e.
∆H = {(0, xb, xc) ∈ R3

+ : xb+xc = 1}, is asymptotically stable under any payoff-sampling
dynamic BEPall. As κ→∞, any convergent series of equilibria in ∆H converges to the
unique Nash equilibrium in ∆H , which is (0, 7

8 ,
1
8).

(i) κ = 1 (ii) κ = 2 (iii) κ = 4

Figure 1: Uniform payoff sampling dynamics BEPall(κ, β
unif ) for different values of κ, for the game

with payoff matrix E1. All figures in this paper can be easily replicated using EvoDyn-3s (Izquierdo
et al., 2018).

With the same motivation as Ritzberger and Weibull (1995), or Balkenborg et al.
(2013), but considering different dynamics, in this paper we focus on the asymptotic
stability of faces of the space of population states: subsets of states where some strate-
gies are not used. Faces are associated with subsets of pure strategies; one subset for
each player position. At one extreme of this spectrum we have monomorphic states
(where all players in each population use the same strategy); if a monomorphic state
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is a rest point under a regular payoff-sampling dynamic, it must correspond to a strict
Nash equilibrium. The opposite extreme is the whole set of population states, i.e. the
maximal face, which includes all the strategies in the game. Ritzberger and Weibull
(1995) consider regular5 selection dynamics –such as the replicator dynamics and other
sign-preserving selection dynamics–, and Balkenborg et al. (2013) analyze generalized
best reply dynamics –which assume highly rational and highly informed players. Here
we consider procedurally rational players and their associated payoff-sampling dynamics
BEPall.

Our main result (proposition 3.1) is a necessary and sufficient condition for a face
to be invariant under every payoff-sampling protocol, leading to the definition of sets
of strategies Closed Under Payoff Sampling (CUPS). If the number of trials is above a
certain value, our condition is also necessary and sufficient for a face to be asymptotically
stable under every payoff-sampling dynamic. Importantly, the characterization of CUPS
sets (proposition 3.1) is made in terms of simple comparisons between some of the payoffs
of the game.

We also prove that a) every CUPS face contains at least one payoff-sampling equi-
librium, b) the support of every regular payoff-sampling equilibrium is a CUPS set, and
c) every minimal CUPS set H contains at least one regular payoff-sampling equilib-
rium with support H, and no regular payoff-sampling equilibrium with support properly
contained in H.

All these results combined can provide useful insights on the dynamics of payoff-
sampling protocols in many games, using only a few comparisons between some of the
payoffs of the game.

As for the relation of CUPS sets to other setwise solution concepts, we show that
CUPS sets are Closed Under Rational Behavior –CURB (Basu and Weibull, 1991)–
and, consequently, every CUPS face contains an essential component of Nash equilibria
(Ritzberger and Weibull, 1995). However, not all CURB sets are CUPS: CUPS sets are a
refinement of CURB sets. Finally, there is no direct connection between CUPS sets and
asymptotic stability under the (multi-population) replicator dynamics: CUPS faces may
not be closed under the better-reply correspondence (Ritzberger and Weibull, 1995) –so
they may not be asymptotically stable under the replicator dynamics– and vice versa.

The rest of the paper is structured as follows. Section 2 contains the notation and
main definitions for symmetric p-player population games played in one population, and
for payoff-sampling dynamics BEPall, as well as some background on dynamical systems.
Section 3 defines strategy sets Closed Under Payoff Sampling (CUPS), provides a simple
way to characterize them from the game payoffs, and presents several results relating
CUPS sets to equilibria and to asymptotic stability under payoff-sampling dynamics.
Section 5 extends the results to (symmetric or asymmetric) p-player games played in p
populations. In section 6 we include some additional examples, and section 7 presents

5The term “regular” frequently used in evolutionary game theory to qualify certain dynamics (see
e.g. Ritzberger and Weibull (1995)) has a different meaning from the one used by Sethi (2021) to qualify
certain tie-breakers. BEPall dynamics are not regular dynamics in the first sense, since a strategy that
is absent from the population can be introduced, if it performs well in a battery of tests.
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several conclusions. All proofs have been relegated to an appendix.

2 Payoff-sampling protocols and dynamics

2.1 Population games

For notational simplicity, we focus first on p-player symmetric games played in one popu-
lation. The extension to multi-population (symmetric or asymmetric) games is presented
in section 5. Following Sandholm et al. (2020), we consider a unit-mass population of
agents who are matched to play a symmetric p-player normal form game G = {A,U}.
This game is defined by a strategy set A containing n pure strategies, and a payoff func-
tion U : Ap → R, where U(i; j1, . . . , jp−1) represents the payoff obtained by a strategy i
player whose opponents play strategies j1, . . . , jp−1. Our symmetry assumption requires
that the value of U not depend on the ordering of the last p− 1 arguments. For a tuple
of (p− 1) strategies α ≡ (α1, α2, ..., αp−1), we write Ui,α ≡ U(i;α1, α2, ..., αp−1).

Aggregate behavior in the population is described by a population state x = (xi)i∈A ∈
∆A ≡ {x ∈ Rn+ :

∑
i∈A xi = 1}, with component xi representing the fraction of agents

in the population using strategy i ∈ A. The standard basis vector ei ∈ ∆A represents
the pure (monomorphic) state at which all agents play strategy i. The expected payoff
function to strategy i at state x is the usual multilinear extension of U to the simplex
∆A: Ui(x) =

∑
α∈A(p−1)(

∏p−1
l=1 xαl)Ui,α.

2.2 Payoff-sampling dynamics BEPall

Under a payoff-sampling protocol BEPall(κ, β), agents occasionally revise their current
strategy by conducting a battery of tests involving all their strategies. The first parame-
ter in a payoff-sampling protocol BEPall(κ, β), called the number of trials κ ∈ N, specifies
the number of times that each strategy will be played in the battery of tests. Thus, each
strategy will be played by the revising agent over κ matches, with each match requiring
a new independent sampling of (p − 1) co-players. The second parameter, namely the
tie-breaking rule β, indicates the rule used to decide which strategy is selected when
the best result (i.e. the greatest total –or, equivalently, average– experienced payoff) is
obtained by more than one strategy.6

Under a payoff-sampling protocol BEPall(κ, β), let wκ,βi (x) be the probability with
which strategy i is selected by a revising agent at state x, i.e., the probability that
strategy i obtains the best total payoff in κ trials, and, if there are ties, it is selected
by the tie-breaking rule β. This probability is a continuous function of the population
state x.

The calculation of the term wκ,βi (x) for payoff-sampling processes BEPall(κ, β) is
presented next, adapted from Sandholm et al. (2020). Let a battery of tests conducted
by a revising agent be the process of testing κ times each of her n strategies, for which

6We could allow each strategy to be tested a possibly different number of trials, and the selection be
based on the greatest average payoff. Our results are qualitatively robust to this variation, considering
that each strategy is tested at least κ times.
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a total of nκ (p− 1) co-players need to be sampled. To represent the strategies used by
the sampled co-players in a battery of tests, consider the indexes i ∈ A, k ∈ {1, ..., κ}
and o ∈ {1, ..., p− 1}; let αbati,k,o ∈ A be the strategy of the o-th co-player sampled when

conducting the k-th trial of strategy i; and let αbat ≡ (αbati,k,o) be the correspondingly
indexed sequence of nκ (p − 1) strategies. Let ΦA,κ,p be the set of all such indexed
sequences of nκ (p − 1) strategies taken from A. For a battery of tests with sampled
strategies αbat, let πU (αbat) be the n-tuple of total experienced payoffs (πUi (αbat))i∈A
obtained by each strategy i ∈ A, i.e.,

πUi (αbat) =
κ∑
k=1

U(i;αbati,k )

where αbati,k ≡ (αbati,k,1, α
bat
i,k,2, ..., α

bat
i,k,p−1) is the (p − 1)-tuple of strategies used by the

sampled co-players of a revising agent when she conducts her k-th trial of strategy i.
Note that the probability of obtaining the sequence of strategies αbat, in a battery

of tests conducted at state x, is
∏
l∈A

∏κ
k=1

∏p−1
o=1 xαbatl,k,o

. Considering this, under a

BEPall(κ, β) protocol, the probability that a revising agent chooses strategy i at popu-
lation state x is given by

wκ,βi (x) =
∑
j∈A

xj
∑

αbat∈ΦA,κ,p

βji(π
U (αbat))

∏
l∈A

κ∏
k=1

p−1∏
o=1

xαbatl,k,o
(2)

where the functions βji : Rn → [0, 1] define the tie-breaking rule. Considering an
n-tuple of total payoffs π ≡ (πi)i∈A, the component functions βji(π) are such that:

• βji(π) = 1 if πi > πl for all l 6= i. I.e., βji(π) = 1 if strategy i is the only one to
obtain the maximum total payoff.

• βji(π) = 0 if πi < maxl∈A πl. I.e., βji(π) = 0 if strategy i does not obtain the
maximum total payoff.

• Otherwise, i.e., if strategy i obtains the maximum total payoff but it is not the
only one to do so, the rule βji(π) establishes the probability with which strategy i
is chosen, depending on the total payoffs obtained by each strategy and on which
strategy (j) is being currently used by the revising agent.

Regular tie-breaking rules βr are such that βrji(π) > 0 whenever strategy i obtains
the maximum total payoff, i.e., whenever πi = maxl∈A πl.

Well-known results of Benäım and Weibull (2003) show that the behavior of a large
but finite population following the procedure presented above is closely approximated by
the solution of the associated mean dynamic, a differential equation which describes the
expected motion of the population from each state. This mean dynamic for BEPall(κ, β)
processes is:

ẋi = wκ,βi (x)− xi (3)
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An equilibrium S(κ, β) under a payoff-sampling protocol is a population state x
satisfying

wκ,βi (x) = xi

for every strategy i. The S(κ) equilibria of Osborne and Rubinstein (1998) are the
S(κ, βunif ) equilibria, which correspond to the uniform payoff-sampling protocol
BEPall(κ, β

unif ).

2.3 Background on dynamical systems. Invariant and asymptotically stable faces

Consider a C1 differential equation ẋ = V (x) defined on ∆A whose forward solutions do
not leave ∆A. A set Y ⊆ ∆A is called forward invariant if any solution path starting in
Y remains in Y for the entire future: x(t, x0) ∈ Y for all x0 ∈ Y and t ∈ R+. It is called
invariant if, moreover, any solution path that at some time is in Y has also been in Y
for the entire past. A point x∗ ∈ ∆A is called a stationary point or a rest point if {x∗}
is an invariant set, satisfying V (x∗) = 0.

For any nonempty subset of strategies H ⊆ A, let ∆H be the face (or subsimplex)
of ∆A spanned by the strategies in H, i.e., ∆H = {x ∈ ∆A : xi = 0 if i /∈ H}. BEP
dynamics are C1 and satisfy ẋi ≥ −xi, which implies that if some strategy is initially
present in the population, it will remain present forever (it can only vanish asymptot-
ically). Consequently, if x(t, x0) is in some face ∆H at some time t, the path x(t, x0)
has been in that face ∆H for the entire past, and if ∆H is forward invariant, then it is
invariant.

A closed invariant set Y is (Lyapunov) stable if for every neighborhood O of Y there
exists a neighborhood O′ of Y such that x(t, x0) ∈ O for all x0 ∈ O′ ∩∆A and all t ≥ 0.

A closed invariant set Y is asymptotically stable if it is stable and there is some
neighborhood O of Y such that x(t, x0)→ Y as t→∞ for all x0 ∈ O ∩∆A.

3 Sets closed under payoff sampling. Characterization and properties

As a preparation for the definition of CUPS sets, we first define sets closed under a
specific payoff-sampling protocol BEPall(κ, β). Informally, a set of strategies H is closed
under a payoff-sampling protocol if any revising agent using that protocol will necessarily
choose some strategy in H when meeting co-players who use strategies in H.

Formally, let Υκ,β(x) be the set of strategies that a revising agent using a BEPall(κ, β)
protocol may select with positive probability at state x, i.e., the set of strategies i such
that wκ,βi (x) > 0.

Definition 1. Closed under a payoff-sampling protocol. A nonempty subset of strategies
H ⊆ A is closed under a BEPall(κ, β) protocol if, for all x ∈ ∆H , Υκ,β(x) ⊆ H.

If H is closed under a BEPall(κ, β) protocol, any player using such a revision protocol
at any state x ∈ ∆H will choose some strategy in H. This makes the face ∆H invariant
under the corresponding payoff-sampling dynamics. It can be easily seen that being
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closed under a protocol is also a necessary condition for ∆H to be invariant under the
protocol, so it is a sufficient and necessary condition for invariance of ∆H .

Definition 2. Closed under payoff sampling. A nonempty subset of strategies H ⊆ A is
closed under payoff sampling (CUPS) if H is closed under every payoff-sampling protocol
BEPall(κ, β). If H is a CUPS set, we say that ∆H is a CUPS face.

A CUPS face is invariant under BEPall(κ, β) dynamics for every κ ∈ N and for
every tie-breaking rule β. The fact that H is a CUPS set implies that, under payoff
sampling, if a revising agent meets only co-players who use strategies in H, then the
selected strategy is necessarily in H, regardless of the number of trials κ and of the
tie-breaking rule. However, we will show later that a sufficient (and necessary) condition
to be a CUPS set is to be closed under (any) one regular payoff-sampling protocol
BEPall(κ, β

r), i.e., for some κ and some βr.
Our next proposition shows that CUPS sets can be easily characterized from the

game payoffs.

Proposition 3.1. A nonempty subset of strategies H ⊆ A is closed under payoff sam-
pling if and only if for every i ∈ (A \H):

max
α∈H(p−1)

Ui,α < max
j∈H

min
α∈H(p−1)

Uj,α (4)

The term (maxj∈H minα∈H(p−1) Uj,α) in proposition 3.1 is the maxmin payoff in H:
the maximum payoff that can be guaranteed to be obtained or exceeded by some strategy
in H when meeting co-players using strategies in H. For a strategy i that is not in H,
the term (maxα∈H(p−1) Ui,α) is the maximum payoff that i may obtain when meeting
co-players using strategies in H. It can be easily seen that the whole strategy set A is
a CUPS set, of size n, and that the CUPS sets of size 1, when they exist, are precisely
the strict Nash strategies of the game (i.e., strategies j such that the strategy profile
(j, j, ..., j) is a strict Nash equilibrium of the game). To see this, note that the condition
for a strategy {j} to be a CUPS set is U(i; j, j, ..., j) < U(j; j, j, ..., j) for all i 6= j, which
is the definition of a strict Nash strategy. From this point of view, a CUPS set is a
setwise generalization of the strict Nash property.

Proposition 3.2, which can be seen as a consequence of proposition 3.1, shows that
if a set is closed under some regular BEPall(κ, β

r) protocol, then it is CUPS.

Proposition 3.2. A subset of strategies is closed under some regular payoff-sampling
protocol BEPall(κ, β

r) if and only if it is CUPS.

Propositions 3.1 and 3.2 together show that being CUPS (i.e. satisfying (4)) is a
necessary and sufficient condition for a face to be invariant under any given regular
BEPall(κ, β

r) dynamics, and a sufficient condition for invariance of a face under any
given BEPall(κ, β) dynamics.

Considering that wκ,β is a continuous function that maps CUPS faces onto them-
selves, we could expect the following existence result for S(κ, β) equilibria in every CUPS
face.
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Proposition 3.3. Every CUPS face contains at least one S(κ, β) equilibrium, for every
number of trials κ and any tie-breaking rule β.

In turn, for regular tie-breaking rules, the support of an S(κ, βr) equilibrium must be
a CUPS set. This is equivalent to stating that regular payoff-sampling equilibria must
belong to the relative interior of some CUPS face.

Proposition 3.4. The support of every regular S(κ, βr) equilibrium is a CUPS set.

Proposition 3.4 shows that the support of any regular S(κ, βr) equilibrium is a CUPS
set, and Proposition 3.3 shows that, for any κ and β, a CUPS set contains the support
of at least one S(κ, β) equilibrium. In other words, H being a CUPS set is a necessary
condition to have a regular S(κ, βr) equilibrium whose support is H; and it is a sufficient
condition to have an S(κ, β) equilibrium whose support is contained in H.

Definition 3. Minimal CUPS set. A minimal CUPS set is a CUPS set that does not
contain any proper CUPS subset.

Given that the whole strategy set A is a CUPS set, the existence of at least one
minimal CUPS set is guaranteed. If H is a minimal CUPS set, we say that ∆H is a
minimal CUPS face.

Proposition 3.5. Consider any number of trials κ ∈ N and any regular tie-breaking
rule βr. A set H is a minimal CUPS set if and only if there is a regular S(κ, βr)
equilibrium with support H and there is no regular S(κ, βr) equilibrium with support
properly contained in H.

Proposition 3.5 implies that, if H is a minimal CUPS set, then, for any κ ∈ N
and any regular tie-breaking rule βr, there is some regular S(κ, βr) equilibrium in the
(relative) interior of ∆H , and there are no S(κ, βr) equilibria in the boundary of ∆H .
Besides, minimal CUPS faces are the smallest faces that can be asymptotically stable
under regular BEPall dynamics (recall that being CUPS is a necessary and sufficient
condition for a face to be invariant under regular BEPall dynamics.)

Our last result in this section shows that, for a sufficiently large number of trials,
CUPS faces are asymptotically stable under BEPall dynamics.

Proposition 3.6. If H is CUPS, then there is a finite k0 such that, for κ > k0, face ∆H

is asymptotically stable under every BEPall(κ, β) dynamics.

So, under any regular BEPall dynamics, being CUPS is a necessary condition for
asymptotic stability of a face (since it is a necessary condition for invariance). And, for
a sufficiently large number of trials, being CUPS is also a sufficient condition for the face
to be asymptotically stable, in this case under every payoff-sampling dynamics BEPall
(regular or not). The proof of proposition 3.6 provides a finite value κ0 (not necessarily
the smallest one) that guarantees asymptotic stability for any κ > κ0, regardless of the
tie-breaking rule.
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4 CUPS and CURB sets: payoff sampling versus rational behavior

Following Basu and Weibull (1991), we call a nonempty set of strategies H ⊆ A Closed
Under Rational Behavior (CURB) if it contains all its best replies, i.e., if BR(x) ⊆ H for
every x ∈ ∆H , where BR is the pure best-reply correspondence which maps population
states to their pure best-reply strategies (Ritzberger and Weibull, 1995).

Proposition 4.1. CUPS sets are closed under rational behavior.

The reason why CUPS sets are CURB is that the strategies in A that are left out
of a CUPS set cannot be best reply to any strategy in the CUPS set (or to any state in
the CUPS face), as they obtain a lower payoff than the maxmin payoff in the CUPS set
(recall proposition 3.1).

Since CUPS sets are CURB, CUPS faces contain an essential connected component
of Nash equilibria, which satisfies strong setwise refinement criteria (Ritzberger and
Weibull, 1995).7 While all CUPS sets are CURB, not all CURB sets are CUPS, as
the following example illustrates. Consider a two-player symmetric game with payoff
matrix E2:

E2 =

a b c

a 1 5 0

b 5 1 0

c 2 2 2

In this example, the set of strategies H1 = {a, b} is not CUPS, given that the maxmin
payoff in H1 is 1 < max(Uc,a, Uc,b) = 2. Sets {a} and {b} are not CUPS either –as the
strategies are not strict Nash–, so there is no regular S(κ, βr) equilibrium in ∆H1 , for
any κ (see proposition 3.4). However, H1 is a minimal CURB set, ∆H1 contains the Nash
equilibrium (xa, xb, xc) = (1

2 ,
1
2 , 0), and a sequence of S(κ, βr) equilibria can converge to

this Nash equilibrium state from the interior of the simplex (see fig. 2). In contrast,
H2 = {c} is a CUPS set (profile (c, c) is strict Nash), so ec = (0, 0, 1) is an S(κ, β)
equilibrium for every κ and β.

Considering stability under the replicator dynamics, CUPS sets need not be closed
under weakly better replies (Ritzberger and Weibull, 1995), which is a sufficient and nec-
essary condition for the corresponding face to be asymptotically stable under the multi-
population replicator dynamics, and, more generally, under any sign-preserving dynam-
ics. Consider for instance a symmetric two-player game with strategy set A = {a, b, c}
and payoff matrix E3:

7Ritzberger and Weibull (1995) show that if a set of strategies is closed under some behavior corre-
spondence –a family that includes the best-response correspondence–, then the associated face contains
an essential connected component of Nash equilibria (van Damme, 1991), which is consequently hyper-
stable and strategically stable (Kohlberg and Mertens, 1986).
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(i) κ = 1 (ii) κ = 2 (iii) κ = 3

Figure 2: Uniform payoff sampling dynamics BEPall(κ, β
unif ) for different values of κ, for the game

with payoff matrix E2. H1 = {a, b} is minimal CURB but it is not CUPS. Face ∆H1 contains no S(κ)
equilibrium. Profile (c, c) is strict Nash, so H2 = {c} is minimal CURB and CUPS.

E3 =

a b c

a 1 4 0

b 4 3 0

c 2 2 2

In this example, the set of strategies H = {a, b} is CUPS, because strategy c obtains
a payoff of 2, less than the maxmin payoff in H, which is 3. But H is not closed under
weakly better replies, because at state ea = (1, 0, 0) ∈ ∆H , strategy c /∈ H is a better
reply to ea than ea itself. As can be seen in fig. 3, face ∆H is not asymptotically stable
in the Replicator Dynamics, given that from any neighborhood of ea there is a trajec-
tory towards ec. By contrast, face ∆H is asymptotically stable under any BEPall(κ, β)
dynamics at least for every κ > 3 (this can be proved using the bound provided in the
proof of proposition 3.6).

(i) Replicator (ii) Uniform payoff sampling,
κ = 1

(iii) Uniform payoff sampling,
κ = 3

Figure 3: (i) Replicator, (ii) Uniform payoff sampling BEPall(κ = 1, βunif ), and (iii) Uniform payoff
sampling BEPall(κ = 3, βunif ) dynamics for the game with payoff matrix E3. Strategy set H = {a, b}
is CUPS, but it is not closed under weakly better replies. Face ∆H is not asymptotically stable in the
Replicator Dynamics but, for every κ, it contains some S(κ) equilibria, and face ∆H is asymptotically

stable under BEPall(κ, β) dynamics at least for every κ > 3.
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Sets closed under weakly better replies need not be CUPS either, as our next example
shows. Consider a symmetric two-player game with strategy set A = {a, b, c} and payoff
matrix E4:

E4 =

a b c

a 1 3 0

b 1 2 0

c 0 1 2

In this example, the set of strategies H = {a, b} is closed under weakly better replies
(and also CURB), and ∆H is asymptotically stable in the Replicator Dynamics (see
fig. 4), but H is not CUPS, because the maxmin payoff in H is 1, which is also achieved
by strategy c /∈ H when playing with b ∈ H. Consequently, ∆H is not invariant under
regular payoff sampling, and, given that {a} and {b} are not CUPS (the strategies are
not strict Nash), ∆H contains no S(κ) equilibria, although there can be S(κ) equilibria
arbitrarily close to ∆H for large enough κ.

(i) Replicator (ii) Uniform payoff sampling,
κ = 1

(iii) Uniform payoff sampling,
κ = 2

Figure 4: (i) Replicator, (ii) Uniform payoff sampling BEPall(κ = 1, βunif ), and (iii) Uniform payoff
sampling BEPall(κ = 2, βunif ) dynamics for the game with payoff matrix E4. Strategy set H = {a, b}

is closed under weakly better replies, but not CUPS. Face ∆H is asymptotically stable in the
Replicator Dynamics, but it contains no S(κ) equilibria.

5 Games played in p populations. Asymmetric games.

In this section we adapt the definitions and results for CUPS sets and faces to the
context of p-player games (either symmetric or asymmetric) played in p populations.
The propositions in this section are straightforward adaptations of the propositions for
the single-population case, and so are their proofs, which we omit.

As argued by Ritzberger and Weibull (1995), many economic applications call for
multi-population, rather than single-population dynamics: the player roles may be dif-
ferent and the game may not be symmetric. This leads to the study of evolutionary dy-
namics (for p-player games) played in p populations, with each player role corresponding
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to a distinct population (Sandholm, 2010).
Let G = (P, A, U) be a finite p-player population game, where P = {1, ..., p} is the

set of populations or player positions, A = ×p∈PA
p is the set of pure strategy profiles,

with Ap being the set of np pure strategies for population p, and U : A→ Rp is the payoff
function, extended to the set of population states [∆]A = ×p∈P∆Ap in the usual way.
A (global) population state x ≡ (x1, x2, ..., xp) is a point in the polyhedron [∆]A, with
xp ∈ ∆Ap corresponding to the state in population p. We represent by Up

i,α = Up(i;α)
the payoff to a player from population p using strategy i ∈ Ap when the other players
use the strategies indicated in the (partial) strategy profile α ∈ ×(o∈P,o 6=p)A

o.
Let a battery of tests conducted by a revising agent from population p be the process

of testing κ times each of her np strategies, for which a total of np κ (p − 1) co-players
need to be sampled. To represent the strategies used by the sampled co-players in a
battery of tests, let α−p ≡ (α−pi,k,o) be an indexed sequence of np κ (p − 1) strategies,
considering three indexes. The first index i ∈ Ap corresponds to the strategy being
tested; the second index k ∈ {1, ..., κ} corresponds to the trial number; the third index
o ∈ P \p corresponds to the population from which a co-player is sampled, so α−pi,k,o ∈ A

o

is the strategy of the co-player from population o sampled when conducting the k-th
trial of strategy i ∈ Ap. Let Φ−pA,κ be the set of all such indexed sequences of np κ (p− 1)
strategies.

For α−p ∈ Φ−pA,κ, let πp(α−p) be the np-tuple of total payoffs (πpi (α
−p))i∈Ap obtained

by each strategy i ∈ Ap, i.e.,

πpi (α
−p) =

κ∑
k=1

Up(i;α−pi,k )

where α−pi,k ≡ (α−pi,k,o)o∈P\p is the (p−1)-tuple of strategies used by co-players of a revising
agent from population p when conducting the k-th trial of strategy i ∈ Ap.

Under a BEPall protocol, the probability that a revising agent from population p
chooses strategy i ∈ Ap at population state x is given by

wp,κ,β
i (x) =

∑
j∈Ap

xpj
∑

α−p∈Φ−p
A,κ

βpji(π
p(α−p))

∏
l∈Ap

κ∏
k=1

∏
o∈P \ p

xo
α−p
l,k,o

(5)

where the functions βpji : Rnp → [0, 1] define the tie-breaking rule. And the payoff-
sampling dynamics BEPall(κ, β) is given by

ẋpi = wp,κ,β
i (x)− xpi (6)

for each p ∈ P and i ∈ Ap.
Let H be the set of all nonempty product sets H ⊆ A, i.e., H = ×p∈PH

p, where
∅ 6= Hp ⊆ Ap, for all p ∈ P. For any H ∈ H, let [∆]H = ×p∈P∆Hp be the face of the
polyhedron [∆]A spanned by H. [∆]H is itself a polyhedron of (global) population states
associated with the reduced game in which the pure strategy set in population p is Hp

(Ritzberger and Weibull, 1995).
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Considering a BEPall(κ, β) protocol, for any global state x, let Υp,κ,β(x) ⊆ Ap be
the set of strategies that a revising agent from population p may select as best-payoff
strategy when conducting a battery of tests at state x, i.e., the set of strategies i ∈ Ap

such that wp,κ,β
i (x) > 0. Let Υκ,β(x) = ×p∈PΥp,κ,β(x).

Definition 4. A product set H ∈ H is closed under a BEPall(κ, β) protocol if for all
x ∈ [∆]H , Υκ,β(x) ⊆ H.

Definition 5. Closed under payoff sampling. A product set H ∈ H is closed under
payoff sampling (CUPS) if H is closed under every BEPall(κ, β) protocol.

If H is a CUPS product set we say that [∆]H is a CUPS face.
Given a product set H ∈ H, and considering a particular population p ∈ P, let

H−p = ×(k∈P,k 6=p)H
k be the product set of the subsets of strategies Hk in populations

k other than p. H−p contains all the strategy profiles of co-players that a player from
population p may face when revising at a state x ∈ [∆]H .

Proposition 5.1. A product set H ∈ H is closed under payoff sampling if and only if
for every p ∈ P and every i ∈ Ap \Hp:

max
α∈H−p

Up
i,α < max

j∈Hp
min
α∈H−p

Up
j,α

Propositions 3.2 and 3.3 can be adapted directly to the multi-population case, re-
placing “a nonempty subset of strategies” with “a nonempty product set H ∈ H”. For
proposition 3.4, adapted below, we need to consider, instead of the support of an equi-
librium (single population case), the product set of the supports of the equilibrium in
each population.

Proposition 5.2. If x is a regular S(κ, βr) equilibrium, then the product set of the
supports of x in each population p ∈ P is a CUPS set.

For the adaptation of proposition 3.5 to the multi-population setting, let the (relative)
interior of [∆]H , represented as int([∆]H), be the set of population states x ∈ [∆]H such
that xpi > 0 for every i ∈ Hp and p ∈ P. And let the boundary of [∆]H , represented as
bd([∆]H), be the set of population states x ∈ [∆]H such that xpi = 0 for some i ∈ Hp

and p ∈ P.

Proposition 5.3. Consider any number of trials κ ∈ N and any regular tie-breaking
rule βr. H is a minimal CUPS set if and only if there is a regular S(κ, βr) equilibrium
in int([∆]H) and there is no regular S(κ, βr) equilibrium in bd([∆]H).

Our two last propositions can be adapted directly from the single-population case.

Proposition 5.4. If [∆]H is a CUPS face, then it is asymptotically stable under every
payoff-sampling dynamic BEPall(κ, β) with κ > k0, for some finite k0.

Proposition 5.5. If H ∈ H is CUPS, then H is Closed Under Rational Behavior
(CURB).
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For this last proposition, and similarly to the single-population case, we call a product
set H closed under rational behavior (CURB) if it contains all its best replies, i.e.,
if BR(x) ⊆ H for every x ∈ [∆H ], where BR is the pure best-reply correspondence
which maps populations states to their pure best-reply strategy combinations (Basu and
Weibull, 1991; Ritzberger and Weibull, 1995).

6 Additional Examples

6.1 The Centipede Game

Centipede (Rosenthal, 1981) is a two-player extensive form game with d ≥ 2 decision
nodes, and d + 1 final nodes. Consider, for instance, a Centipede game with 8 decision
nodes, as shown in Figure 5. Each decision node presents two actions: stop and continue.
The nodes are arranged linearly, with the first one assigned to player 1 and subsequent
ones assigned in an alternating fashion. A player who decides to stop ends the game. A
player who decides to continue suffers a cost of 1 but benefits his opponent with 3, and
sends the game to the next decision node, if one exists. For player p ∈ {1, 2}, let strategy
ip ∈ Ap be the plan to stop at his ith decision node and not before, with an additional
strategy for the plan to continue at all his decision nodes. Of course, the portion of a
player’s plan that is actually carried out depends on the plan of his opponent.

1

0,0

2

-1,3

1

2,2

2

1,5

1

4,4

8,82

3,7 

1

6,6

2

5,9 

Figure 5: The Centipede game with d = 8 decision nodes. Each decision node is labeled with a single
number (1 or 2) denoting the deciding player. Each of the d+ 1 = 9 final nodes is labeled with a pair of

payoffs (π1, π2), where πi denotes the payoff obtained by player i.

In a centipede game, the best reply to a player that stops at some node other than
the first one, is to stop at the previous node, and all strategies for player 2 are a best
reply to strategy 1 for player 1 (i.e. the stop-at-first-node strategy). Given that CUPS
sets are CURB, it follows that any CUPS product set (H1 × H2) has to include the
stop-at-first-node strategy for player 1 in H1, and has to include all strategies for the
second player in H2. Considering that the payoff to the stop-at-first-node strategy for
the first player is 0 and that all his other strategies may provide a higher payoff (when
meeting some strategy in H2 = A2), it follows that the only CUPS set is the product
set of all strategies: (A1 × A2). Consequently, every regular S(κ, βr) equilibrium (and,
in particular, every S(κ) equilibrium) in the Centipede game must have full support.
Sandholm et al. (2019) show that, in any S(1) equilibrium, most players in a centipede
game continue until their last three decision nodes.
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6.2 The Traveler’s Dilemma

The Traveler’s Dilemma (Basu, 1994) is a normal form analogue of the Centipede game
in which the unique rationalizable strategy earns the players far less than many other
strategy profiles. The payoff matrix for the n-strategy Traveler’s Dilemma is E5.

E5 =

1 2 3 4 ... n

1 2 4 4 4 · · · 4

2 0 3 5 5 · · · 5

3 0 1 4 6 · · · 6

4 0 1 2 5
. . .

...
...

...
...

...
. . .

. . . n+ 2

n 0 1 2 . . . n− 2 n+ 1

Strategy 1 is the unique rationalizable strategy, and profile (1,1) is the unique Nash
equilibrium. Considering that the best reply to strategy i > 1 is strategy i − 1, and
that CUPS sets are CURB, if a CUPS set contains strategy i, then it has to contain
strategies i− 1, i− 2, ..., 1. It can also be seen from the payoff matrix that if H is CUPS
and {1, 2, 3} ⊆ H then H = A. Consequently, the only CUPS sets are {1}, {1, 2} and
A. The first strategy is strict Nash, so e1 is an S(κ, β) equilibrium, whose stability
is analyzed in Sandholm et al. (2020). For κ = 1, it is easy to check that the only
equilibrium in the face spanned by {1, 2} is e1, because the dynamics on that face satisfy
ẋ2 = −x2

2. As the only other CUPS set is A, any other regular S(κ, βr) equilibrium
must have full support.

7 Conclusions

We have defined strategy sets Closed Under Payoff Sampling (CUPS) and shown that a
necessary and sufficient condition to be CUPS is to be closed under some regular payoff-
sampling dynamics BEPall(κ, β

r). This means that the property of being closed under a
regular payoff-sampling protocol BEPall(κ, β

r) is independent of the number of trials κ
and of the (regular) tie-breaking rule. We have also provided a simple rule to identify
CUPS sets from the payoffs of the game .

The identification of CUPS sets in a game yields useful insights on its dynamics
under payoff sampling. Being CUPS is a sufficient condition for a face to be invariant
under every payoff-sampling dynamics, and it is a necessary and sufficient condition for a
face to be invariant under any regular payoff-sampling dynamics (proposition 3.1). Also,
for a sufficiently large number of trials, CUPS faces are asymptotically stable under
any payoff-sampling dynamics: even if some (sufficiently few) players adopt a strategy
outside the support of the face, the population will tend to move back to the face.

CUPS sets are also useful to characterize the support of payoff-sampling equilibria.
For a start, every CUPS face contains at least one payoff-sampling equilibrium. We have
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also proved that the support of every regular payoff-sampling equilibrium is a CUPS
set, and that every minimal CUPS set H contains at least one regular payoff-sampling
equilibrium with support H, and no regular payoff-sampling equilibrium with support
properly contained in H.

Regarding its relation with other setwise solution concepts, CUPS sets are a refine-
ment of strategy sets Closed Under Rational Behavior (CURB). Given that, as the num-
ber of trials κ goes to infinity, any payoff-sampling dynamics BEPall becomes a version of
best response dynamics, one can consider payoff-sampling dynamics BEPall as noisy best
response dynamics, with more noise (i.e. greater variance in the information obtained by
sampling) for lower values of κ. While all CURB faces are asymptotically stable under
best response dynamics (Balkenborg et al., 2013), only those that are also CUPS can be
asymptotically stable under regular payoff sampling. For large enough number of trials,
CUPS faces are indeed asymptotically stable under any payoff-sampling dynamics. In
contrast, CURB faces that are not CUPS cannot contain any regular payoff-sampling
equilibrium (for any number of trials); moreover, as illustrated in fig. 2(i), such faces
may be far away from any payoff-sampling equilibrium for low number of trials.

A Appendix

Proof of proposition 3.1. Let Hc ≡ (A \H). The condition in proposition 3.1 is equiva-
lent to

max
i∈Hc

max
α∈H(p−1)

Ui,α < max
j∈H

min
α∈H(p−1)

Uj,α. (7)

LetM(Hc,H) ≡ maxi∈Hc maxα∈H(p−1) Ui,α and letMaxminH ≡ maxj∈H minα∈H(p−1) Uj,α.
The best payoff that the strategies in Hc can obtain at a state x ∈ ∆H is lower or equal
than κM(Hc,H), and this upper bound for the maximum payoff of the strategies in Hc is
obtained with positive probability at any x ∈ int(∆H) (i.e., the relative interior of ∆H).
The best payoff obtained by the strategies in H at a state x ∈ ∆H is greater or equal
than κMaxminH , and this lower bound for the best payoff of the strategies in H is
obtained with positive probability at any x ∈ int(∆H). Consequently, if (7) holds, then

wκ,βi (x) = 0 for all x ∈ ∆H and all i ∈ Hc, and also for any κ and any tie-breaking rule β,
proving that H is CUPS. Similarly, considering any x ∈ int(∆H), we find that (7) is a
necessary condition for H to be CUPS: if (7) does not hold, there is some i ∈ Hc with

wκ,β
r

i (x) > 0 for any x ∈ int(∆H), any κ ∈ N and any regular tie-breaking rule βr.

Proof of proposition 3.2. From the proof of proposition 3.1 we know that (7) is a neces-
sary condition for a set H to be closed under some (any) regular BEPall(κ, β

r) protocol,
and (7) is also a sufficient condition to be closed under every BEPall(κ, β) protocol.

Proof of proposition 3.3. If H is CUPS, then wκ,βi (x) = 0 for every i ∈ Hc, x ∈ ∆H , κ ∈
N and tie-breaking rule β, so wκ,β(x) is a continuous function that maps the compact ∆H

onto itself. By Brouwer’s fixed point theorem, ∆H contains at least one fixed point x
such that wκ,β(x) = x, which is an S(κ, β) equilibrium.
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Proof of proposition 3.4. The proof is conducted by contradiction. Let x be a regular
S(κ, βr) equilibrium and let H be the support of x. Note that there is a positive proba-
bility that all strategies in H, when tested κ times at state x, obtain an average payoff
no greater than the maxmin value MaxminH ≡ maxj∈H minα∈H(p−1) Uj,α. Additionally,
if H is not CUPS, there is a positive probability that some strategy i ∈ Hc with xi = 0
obtains an average payoff greater than or equal to MaxminH and is selected (because

the tie-breaking rule is regular), so wκ,β
r

i (x) > 0, contradicting the fact that x is an
equilibrium with support H.

Proof of proposition 3.5. Let H be a minimal CUPS set. By proposition 3.3, for every κ
and βr, H contains the support of at least one S(κ, βr) equilibrium. By proposition 3.4,
no proper subset of H can be the support of a regular payoff-sampling equilibrium
S(κ, βr), so there is no regular S(κ, βr) equilibrium x with supp(x) ⊂ H. Now, fix κ and
βr and let y be an S(κ, βr) equilibrium such that there is no S(κ, βr) equilibrium y′ with
supp(y′) ⊂ supp(y) ≡ J . By proposition 3.4, J is CUPS. If J is not a minimal CUPS
set, then, by proposition 3.3, there is some S(κ, βr) equilibrium y′ with supp(y′) ⊂ J (a
contradiction), so J is a minimal CUPS set.

Proof of proposition 3.6. If H = A, the result is immediate. Otherwise, the proof con-
siders that, in a neighborhood of ∆H , a revising agent conducting a battery of tests will
meet mainly co-players using strategies in H, and, for states sufficiently close to ∆H , the
probability that a revising agent meets more than one co-player using some strategy in
HC = A\H (i.e., not in H) becomes negligible, compared with the probability of meeting

either none or just one of such “deviating” co-players. Defining sκ,βi (x) as the probability
of selecting strategy i under those most-likely events, and letting ε ≡

∑
i∈Hc xi, we will

show that:

i) wκ,βi (x) = sκ,βi (x) +O(ε2) as ε→ 0.

ii) There is a finite bound k0 such that, for κ > k0 and i ∈ Hc, sκ,βi (x) = 0.

Consequently, for κ > k0 the dynamics (3) are such that
∑

i∈Hc ẋi = ε̇ = −ε+O(ε2),
which guarantees asymptotic stability of ∆H .

Let sκ,βi (x) be the probability of selecting strategy i at state x in a battery of tests
such that either none or exactly one of the n (p−1)κ sampled co-players (the “deviating
co-player”) uses some strategy j in Hc. Note in (2) that the probability of meeting
more than one deviating co-player in a battery of tests at state x – corresponding to
all sequences of strategies αbat with at least two strategies belonging to Hc – involves a

sum of monomials
∏n (p−1)κ
o=1 xio (where io is the strategy of the o-th sampled co-player)

such that at least two elements xi and xj in every monomial are such that i, j ∈ Hc (if
i = j, we would have at least x2

i ). Considering ε ≡
∑

i∈Hc xi, which implies xi ≤ ε for

all i ∈ Hc, we have that wκ,βi (x) = sκ,βi (x) +O(ε2) as ε→ 0.

There are three possible cases that we need to consider to calculate sκ,βi (x):
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a) There is no deviating co-player met in a battery of tests. In this case, the best
payoff achieved by the strategies in H is bounded below by LBa

H ≡ κMaxminH ,
where MaxminH ≡ maxj∈H minα∈H(p−1) Uj,α. And the best payoff achieved by
the strategies in Hc is bounded above by UBa

Hc ≡ κ maxi∈Hc,α∈Hp−1 Ui,α. Con-
sequently, considering that H is CUPS, the best payoff in this case is obtained
exclusively by strategies in H.

b) The deviating co-player is met when testing some strategy i ∈ H. In this case,
the best payoff achieved by the strategies in H is bounded below by LBb

H ≡
(κ− 1)MaxminH + maxm∈M(H) minα∈Hp−1,j∈Hc Um,αj , where:

– M(H) is the set of maxmin strategies M(H) ≡ {i ∈ H : minα∈H(p−1) Ui,α =
MaxminH} and

– αj is a modification of a (p− 1)-tuple of strategies α ∈ H(p−1), in which one
of the strategies has been replaced by strategy j ∈ Hc.

And the best payoff achieved by the strategies in Hc is bounded above by UBb
Hc ≡

κ maxi∈Hc,α∈Hp−1 Ui,α. Consequently, for

κ > b1 ≡
MaxminH −maxm∈M(H) minα∈Hp−1,j∈Hc Um,αj

MaxminH −maxi∈Hc,α∈Hp−1 Ui,α
<∞

the best payoff in this case is obtained exclusively by strategies in H.

c) The deviating co-player is met when testing some strategy i ∈ Hc. In this case,
the best payoff achieved by the strategies in H is bounded below by LBc

H ≡
κMaxminH , and the best payoff achieved by the strategies in Hc is bounded
above by UBc

Hc ≡ (κ − 1) maxi∈Hc,α∈Hp−1 Ui,α + maxi∈Hc,α∈Hp−1,j∈Hc Ui,αj , with
αj defined as before. Consequently, for

κ > b2 ≡
maxi∈Hc,α∈Hp−1,j∈Hc Ui,αj −maxi∈Hc,α∈Hp−1 Ui,α

MaxminH −maxi∈Hc,α∈Hp−1 Ui,α
<∞

the best payoff in this case is obtained exclusively by strategies in H.

Looking at the three previous cases, we have that, for κ > k0 ≡ max(b1, b2), the best
payoff in the three cases above is obtained exclusively by strategies in H, which implies
that, for i ∈ Hc, we have sκ,βi (x) = 0 and wκ,βi (x) = O(ε2), which, considering (3), leads
to

∑
i∈Hc ẋi = ε̇ = −ε + O(ε2). Consequently, there is some positive ε0 > 0 and some

positive constant λ > 0 such that, for every x with
∑

i∈Hc xi = ε < ε0, we have ε̇ ≤ −λ ε,
proving asymptotic stability of the face ∆H .

Proof of proposition 4.1. The proof coincides with the first part of the proof of proposi-
tion 3.1.
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