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Abstract

Reinforcement learners tend to repeat actions that led to satisfactory outcomes in the past, and avoid
choices that resulted in unsatisfactory experiences. This behavior is one of the most widespread adaptation
mechanisms in nature. In this paper we fully characterize the dynamics of one of the best known stochastic
models of reinforcement learning [Bush, R., Mosteller, F., 1955. Stochastic Models of Learning. Wiley &
Sons, New York] for 2-player 2-strategy games. We also provide some extensions for more general games
and for a wider class of learning algorithms. Specifically, it is shown that the transient dynamics of Bush and
Mosteller’s model can be substantially different from its asymptotic behavior. It is also demonstrated that
in general—and in sharp contrast to other reinforcement learning models in the literature—the asymptotic
dynamics of Bush and Mosteller’s model cannot be approximated using the continuous time limit version
of its expected motion.
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1. Introduction

Reinforcement learners use their experience to choose or avoid certain actions based on their
consequences. Actions that led to satisfactory outcomes (i.e. outcomes that met or exceeded
aspirations) will tend to be repeated in the future, whereas choices that led to unsatisfactory ex-
periences are avoided. This paper characterizes the dynamics of a variant of Bush and Mosteller’s
(1955) linear stochastic model of reinforcement learning for 2 × 2 (i.e. 2-player 2-strategy)
games.

The empirical study of reinforcement learning as a crucial facet of (human and non-human)
animal behavior finds its roots in Thorndike’s experiments on instrumental learning at the end
of the 19th century (Thorndike, 1898). The results of these experiments were formalized in the
‘law of effect’, one of the most robust properties of learning in the experimental psychology
literature. Reinforcement learning is an important aspect of much learning in almost all ani-
mals, including many phylogenetically very distant from vertebrates (e.g., earthworms, Maier
and Schneirla, 1964, and fruit flies, Wustmann et al., 1996). In strategic contexts, empirical ev-
idence for reinforcement learning is strongest in animals with limited reasoning abilities or in
human subjects who have no information beyond the payoff they receive and specifically may be
unaware of the strategic nature of the situation (Duffy, 2006; Camerer, 2003; Bendor et al., 2001a;
Roth and Erev, 1995; Mookherjee and Sopher, 1994). In the context of experimental game
theory with human subjects, several authors have used simple models of reinforcement learn-
ing to successfully explain and predict behavior in a wide range of games (McAllister, 1991;
Roth and Erev, 1995; Mookherjee and Sopher, 1994, 1997; Chen and Tang, 1998; Erev and
Roth 1998, 2001; Erev et al., 1999). Reinforcement models in the literature tend to differ in the
following, somewhat interrelated, features:

• Whether learning slows down or not, i.e. whether the model accounts for the ‘power law of
practice’ (e.g., Erev and Roth, 1998 vs. Börgers and Sarin, 1997).

• Whether the model allows for avoidance behavior in addition to approach behavior (e.g.,
Bendor et al., 2001b vs. Erev and Roth, 1998). Approach behavior is the tendency to repeat
the associated choices after receiving a positive stimulus; avoidance behavior is the tendency
to avoid the associated actions after receiving a negative stimulus (one that does not satisfy
the player). Models that allow for negative stimuli tend to define an aspiration level against
which achieved payoffs are evaluated. This aspiration level may be fixed or vary endoge-
nously (Bendor et al., 2001a, 2001b).

• Whether “forgetting” is considered, i.e. whether recent observations weigh more than distant
ones (Erev and Roth, 1998; Rustichini, 1999; Beggs, 2005).

• Whether the model imposes inertia—a positive bias in favor of the most recently selected
action (Bendor et al., 2001a, 2001b).

Laslier et al. (2001) present a more formal comparison of various reinforcement learn-
ing models. Each of the features above can have important implications for the behavior of
the particular model under consideration and for the mathematical methods that are adequate
for its analysis. For example, when learning slows down, theoretical results from the the-
ory of stochastic approximation (Benveniste et al., 1990; Kushner and Yin, 1997) and from
the theory of urn models can often be applied (e.g., Ianni, 2001; Hopkins and Posch, 2005;
Beggs, 2005), whereas if the learning rate is constant, results from the theory of distance di-
minishing models (Norman, 1968, 1972) tend to be more useful (e.g., Börgers and Sarin, 1997;
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Bendor et al., 2001b). Similarly, imposing inertia facilitates the analysis to a great extent, since
it often ensures that a positive stimulus will be followed by an increase in the probability weight
on the most recently selected action at some minimal geometric rate (Bendor et al., 2001b).

A popular model of reinforcement learning in the game theory literature is the Erev–Roth (ER)
model (Roth and Erev, 1995; Erev and Roth, 1998). Understanding of the ER model (also called
cumulative proportional reinforcement model by Laslier et al., 2001 and Laslier and Walliser,
2005) and its relation with an adjusted version of the evolutionary replicator dynamics (Weibull,
1995) has been developed in papers by Laslier et al. (2001), Hopkins (2002), Laslier and Walliser
(2005), Hopkins and Posch (2005), and Beggs (2005). An extension to the ER model covering
both partial and full informational environments (in the latter, a player can observe the payoffs
for actions not selected), as well as linear and exponential adjustment procedures, is analyzed for
single person decision problems by Rustichini (1999).

Arthur (1991) proposed a model differing from the ER model only in that the step size of
the learning process in ER is stochastic whereas it is deterministic in Arthur’s model—but step
sizes are of the same order in both (see Hopkins and Posch, 2005 for details). Theoretical results
for Arthur’s model in games and its relation with the ordinary evolutionary replicator dynamics
are given by Posch (1997), Hopkins (2002), Hopkins and Posch (2005), and Beggs (2005): de-
spite their similarity, the ER model and Arthur’s model can have different asymptotic behavior
(Hopkins and Posch, 2005).

Another important set of reinforcement models are the aspiration-based models, which allow
for negative stimuli (see Bendor et al., 2001a for an overview). The implications of aspiration-
based reinforcement learning in strategic contexts have been studied thoroughly by Karandikar
et al. (1998) and Bendor et al. (2001b). This line of work tends to require very mild conditions
on the way learning is conducted apart from the assumption of inertia. Assuming inertia greatly
facilitates the mathematical analysis, enabling the derivation of sharp predictions for long-run
outcomes in 2-player repeated games, even with evolving aspirations (see, e.g., Karandikar et al.,
1998; Palomino and Vega-Redondo, 1999; Bendor et al., 2001b).

The model analyzed here is a variant of Bush and Mosteller’s (1955) linear stochastic model
of reinforcement learning (henceforth BM model). The BM model is an aspiration-based rein-
forcement learning model, but does not impose inertia. In contrast to the ER model and Arthur’s
model, it allows for negative stimuli and learning does not fade with time. A special case of the
BM model where all stimuli are positive was originally considered by Cross (1973), and ana-
lyzed by Börgers and Sarin (1997), who also related it to the replicator dynamics. Börgers and
Sarin (2000) studied an extension of the BM model where aspirations evolve simultaneously
with choice probabilities in single person decision contexts. Here, we develop Börgers and Sar-
in’s work by analyzing the dynamics of the BM model in 2×2 games where aspiration levels are
fixed, but not necessarily below the lowest payoff, so negative stimuli are possible. These dynam-
ics have been explored by Macy and Flache (2002) and Flache and Macy (2002) in 2 × 2 social
dilemmas using computer simulation. Here we formalize their qualitative analysis and extend
their results for any 2 × 2 game.

In contrast to other reinforcement learning models in the literature, we show that the asymp-
totic behavior of the BM model cannot be approximated using the continuous time limit version
of its expected motion. Such an approximation can be valid over bounded time intervals but de-
teriorates as the time horizon increases. This important point—originally emphasized by Boylan
(1992, 1995) in a somewhat different context—was already noted by Börgers and Sarin (1997)
in the BM model for strictly positive stimuli, and has also been found in other models since then
(Beggs, 2002). The asymptotic behavior of the BM model is characterized in the present paper
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using the theory of distance diminishing models (Norman, 1968, 1972). Börgers and Sarin (1997)
also used this theory to analyze the case where aspirations are below the minimum payoff; here
we extend their results for 2 × 2 games where aspiration levels can have any fixed value.

2. The BM model

Consider a normal-form 2 × 2 game with set of players I = {1,2}, pure-strategy space Di for
each player i ∈ I , and payoff functions ui that give player i’s payoff for each profile d = (d1, d2)

of pure strategies, where di ∈ Di is a pure strategy for player i. Let D = ×i∈IDi be the space of
pure-strategy profiles, or possible outcomes of the game. We can represent any mixed strategy
for player i as a vector pi in the unit simplex Δ1, where the j th coordinate pi,j ∈ R of the vector
pi is the probability assigned by pi to player i’s j th pure strategy. A mixed-strategy profile is
a vector p = (p1,p2), where each component pi ∈ Δ1 represents a mixed strategy for player
i ∈ I .

In the BM model, after each player i has selected an action according to their mixed strat-
egy pi , strategy revision follows a reinforcement learning approach: players increase the prob-
ability of actions leading to payoffs above their aspiration level, and decrease the probability
of actions that led to payoffs below aspiration level. Players use only information concerning
their own past choices and payoffs, ignoring the payoffs and choices of their counterparts. More
precisely, strategy updating takes place in two steps. First, after outcome dn = (dn

1 , dn
2 ) in time-

step n, each player i calculates her stimulus si(d
n) for the action just chosen dn

i according to the
following formula:

si(d) = ui(d) − Ai

supk∈D |ui(k) − Ai | ,

where Ai is player i’s aspiration level. Hence the stimulus is always a number in the interval
[−1,1]. Note that players are assumed to know supk∈D |ui(k) − Ai |. Secondly, having calcu-
lated their stimulus si(d

n) after the outcome dn, each player i updates her probability pi,di
of

undertaking the selected action di as follows

pn+1
i,di

=
{

pn
i,di

+ li · si(dn) · (1 − pn
i,di

) if si(d
n) � 0,

pn
i,di

+ li · si(dn) · pn
i,di

if si(d
n) < 0,

(1)

where pn
i,di

is player i’s probability of undertaking action di in time-step n, and li is player i’s
learning rate (0 < li < 1). Thus, the higher the stimulus magnitude (or the learning rate), the
larger the change in probability. The updated probability for the action not selected derives from
the constraint that probabilities must add up to one.

A 2 × 2 BM model parameterization requires specifying both players’ payoff function ui , as-
piration level (Ai ), and learning rate (li ). A parameterized model will be denoted S (for System).
Since the state of any particular system can be fully characterized by the strategy profile p,p

will also be named state of the system. Note that there are only two independent variables in p.
Let P n(S) be the state of a system S in time-step n. Note that P n(S) is a random variable and
p is a particular value of that variable; the sequence of random variables {P n(S)}n�0 consti-
tutes a discrete-time Markov process with potentially infinite transient states. In a slight abuse of
notation we refer to such a process {P n(S)}n�0 as the BM process P n.
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3. Attractors in the dynamics of the system

Using computer simulation, Macy and Flache (2002) described two types of learning-theoretic
equilibria that govern the dynamics of the BM model: self-reinforcing equilibria (SRE), and self-
correcting equilibria (SCE). These are not static equilibria, but strategy profiles which act as
attractors in the sense that, under certain conditions, the system will tend to approach them or
linger around them. Here, we formalize these two concepts.

We define an SRE as an absorbing state of the system (i.e. a state p that cannot be abandoned)
where both players receive a positive stimulus. An SRE corresponds to a pair of pure strategies
such that its certain associated outcome gives a strictly positive stimulus to both players (hence-
forth a mutually satisfactory outcome). Escape from an SRE is impossible since no player will
change her strategy. Moreover, SREs act as attractors in the sense that if the system is near to an
SRE, then it will probably move further towards it. This is because near an SRE there is a high
probability that its associated mutually satisfactory outcome will occur, and this brings the sys-
tem even closer to the SRE. The number of SREs in a system is the number of outcomes where
both players obtain payoffs above their respective aspiration levels.

To formalize the concept of SCE, we need to consider the expected motion of the system and
its associated ordinary differential equation (ODE). The expected motion (EM) of a system S

in state p is given by a vector function EMS(p) whose components are, for each player, the
expected change in the probabilities of undertaking each of the two possible actions. Mathemat-
ically,

EMS(p) ≡ E(ΔP n | P n = p).

Hence, the ODE formed by taking the expected motion of the stochastic process P n is

ḟ = EMS(f ). (2)

We define an SCE of a system S as an asymptotically stable critical point of the continuous time
limit approximation of its expected motion (given by Eq. (2)). Note that a particular state of the
system could be an SRE and an SCE at the same time. An illustration of the phase plane of the
ODE corresponding to a system where two players with the same learning rate l and aspirations
Ai = 2 are playing a symmetric Prisoner’s Dilemma with payoffs [4,3,1,0] is shown in Fig. 1.

A crucial question to characterize the dynamics of learning models, and one to which sto-
chastic approximation theory (Benveniste et al., 1990; Kushner and Yin, 1997) is devoted, is
whether the expected and actual motion of the system should become arbitrarily close in the
long run. This is generally true for processes whose motion slows down at an appropriate rate (as
explained by Hopkins and Posch, 2005 when studying the ER model), but not necessarily so in
other cases. We show in the next sections that the BM model’s asymptotic behavior can be dra-
matically different from that suggested by its associated ODE, which is, however, very relevant
for characterizing the transient dynamics of the system, particularly with small learning rates.

4. Three dynamic regimes

In the general case, the dynamics of the BM model may exhibit three different regimes:
medium run, long run, and ultralong run. This terminology is borrowed from Binmore and
Samuelson (1993) and Binmore et al. (1995, p. 10), who reserve the term short run for the
initial conditions. The medium run is ‘the time intermediate between the short run [i.e. initial
conditions] and the long run, during which the adjustment to equilibrium is occurring.’ The long
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Fig. 1. Trajectories in the phase plane of the ODE associated with a system where two players with the same learning
rate li = l and aspirations Ai =2 are playing a symmetric Prisoner’s Dilemma with payoffs [4,3,1,0]. This system has
a unique SCE at [p1,C,p2,C ] = [0.37,0.37] and a unique SRE at [p1,C,p2,C ] = [1,1]. The numbered balls show
the state of the system after the indicated number of iterations in a sample simulation run (li = 2−4; initial state
[p1,C,p2,C ] = [1,0]).

run is ‘the time span needed for the system to reach the vicinity of the first equilibrium in whose
neighborhood it will linger for some time.’ Finally, the ultralong run is ‘a period of time long
enough for the asymptotic distribution to be a good description of the behavior of the system.’

Binmore et al.’s terminology is particularly useful for our analysis because it is often the
case in the BM model that the transient (i.e. medium and long run) dynamics of the system are
dramatically different from its asymptotic (i.e. ultralong run) behavior. Whether the three differ-
ent regimes are clearly distinguishable strongly depends on the players’ learning rates. For high
learning rates the system quickly reaches its asymptotic behavior and the distinction between the
different regimes is not particularly useful. For small learning rates, however, the three different
regimes can be clearly observed.

In brief, it is shown in this paper that with sufficiently small learning rates li and number of
iterations n not too large (n · li bounded), the medium run dynamics of the system are best charac-
terized by the trajectories in the phase plane of Eq. (2). Under these conditions, SCEs constitute
the ‘the first equilibrium in whose neighborhood it [the system] will linger for some time’ and,
as such, they usefully characterize the long run dynamics of the system. After a potentially very
lengthy long-run regime in the neighborhood of an SCE, the system will eventually reach its ul-
tralong run behavior, which in most BM systems consists in approaching an SRE asymptotically
(see formal analysis below).

For an illustration of the different regimes, consider a system where two players with aspira-
tions Ai = 2 and learning rates li = l are playing a symmetric Prisoner’s Dilemma with payoffs
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[4,3,1,0]. This system has a unique SCE at [p1,C,p2,C] = [0.37,0.37] and a unique SRE at
[p1,C,p2,C] = [1,1], where pi,C denotes player i’s probability to cooperate. It is shown below
that this system asymptotically converges to its unique SRE with probability 1 regardless of the
value of l. The evolution of the probability to cooperate (which is identical for both players) is
represented in the rows of Fig. 2 for different values of l. Initially, both players’ probability to
cooperate is 0.5. The phase plane of the corresponding ODE is shown in Fig. 1.

With high learning rates (e.g., see top row in Fig. 2) the ultralong run behavior is quickly
reached. On the other hand, with low learning rates the two transient regimes become apparent;
these are closely related to the trajectories of Eq. (2), which follow paths substantially apart from
the end-state of the system (Fig. 1). Note that asymptotic convergence to mutual cooperation is
guaranteed in the seven systems represented in the rows of Fig. 2, but this cannot be appreciated
in the bottom rows, which do not go beyond their long run behavior.

The following sections are devoted to the formal analysis of the transient and asymptotic
dynamics of the BM model. The proofs of every proposition in the paper are included in Appen-
dix A.

5. Transient dynamics

As mentioned above, when learning takes place by large steps the system quickly reaches
its asymptotic behavior, and no clear (transient) patterns are observed before it does so (see
top row of Fig. 2). With small learning rates, however, the two transient regimes, which may be
significantly different from the asymptotic regime, are clearly distinguishable. This section shows
that SCEs are powerful attractors of the actual dynamics of the system when learning occurs by
small steps. Specifically, it is demonstrated that the BM process P n follows the trajectories of its
associated ODE with probability approaching 1 as learning rates decrease and n is kept within
certain limits.

Consider a family of BM systems Sl whose members, indexed in l = l1, only differ in both
players’ learning rates, and such that l1/l2 is a fixed constant for every model in the family.
Let P l

n = P n(S
l) be the family of stochastic processes associated with such a family of sys-

tems Sl . As an example, note that Fig. 2 shows simulation runs of seven stochastic processes
(P n(F

0.5),P n(F
0.25), . . .) belonging to one particular family F l . Consider the ODE given by

Eq. (3) below, and let f x(t) be the trajectory of this ODE with initial state x.

ḟ = 1

l
EMSl

(f ). (3)

The ODE in Eq. (3) is common to every member of a given family, and its solution trajectories
f x(t) only differ from those given by Eq. (2) (which determines a different ODE for each mem-
ber) in the time scale, i.e. the representation of the trajectories of ODEs (2) and (3) in the phase
plane is identical: the learning rate determines how quickly the path is walked, but the path is
the same for every model of a family. Similarly, SCEs and SREs are common to every model in
a family. The following proposition characterizes the medium-run (statements (i) and (ii)) and the
long-run (statement (iii)) dynamics of the BM model when l is small. No conditions are imposed
on players’ aspirations.

Proposition 1. Consider the family of stochastic processes {P l,x
n }n�0 with initial state P l

0 = x

for every l. Let K be an arbitrary constant. For learning by small steps (l → 0) and transient
behavior (n · l � K < ∞), we have:
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) after n iterations, for different learning rates li = l, with
ulation runs. The initial probability for both players is 0.5.
Fig. 2. Histograms representing the probability to cooperate for one player (both players’ probabilities are identical
Ai = 2, in a symmetric Prisoner’s Dilemma with payoffs [4,3,1,0]. Each histogram has been calculated over 1000 sim
The significance of the gray arrows will be explained later in the text.
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(i) For fixed ε > 0 and l sufficiently small,

Pr
{

max
n�(K/l)

∥∥P l,x
n − f x(n · l)∥∥ > ε

}
� C(l,K),

where, for fixed K < ∞, C(l,K) → 0 as l → 0. Thus, for transient behavior and learning
by small steps, we have uniform convergence in probability of P l,x

n to the trajectory f x of
the ODE in (3).

(ii) The distribution of the variable (P l,x
n − f x(n · l))/√l converges to a normal distribution

with mean 0 and variance independent of l as l → 0 and n · l → K < ∞.
(iii) Let Lx be the limit set of the trajectory f x(t). For n = 0,1, . . . ,N < ∞, and for any δ > 0,

the proportion of values of P l,x
n within a neighborhood Bδ (Lx) of Lx goes to 1 (in proba-

bility) as l → 0 and N · l → ∞.

To see an application of Proposition 1, consider the particular family F l (Fig. 2). Statement (i)
says that when n is not too large (n · l bounded), with probability increasingly close to 1 as l de-
creases, the process P x

n(F l) with initial state P 0(F
l) = x follows the trajectory f x(n · l) of

the ODE in (3) within a distance never greater than some arbitrary, a priori fixed, ε > 0. (This
proves the conjecture put forward by Börgers and Sarin (1997) in Remark 2.) The trajectories
corresponding to P n(F

l ) are displayed in Fig. 1, and the convergence of the processes to the ap-
propriate point in the trajectory f x(n · l) as l → 0 can be appreciated following the gray arrows
(which join histograms for which n · l is constant) in Fig. 2. These arrows also illustrate state-
ment (ii): the distribution of P x

n(F l ) approaches normality with decreasing variance as l → 0,
keeping n · l constant. The fact that the trajectory f x is a good approximation for the medium-
run dynamics of the system for slow learning shows the importance of SCEs as attractors of
the actual dynamics of the system. To illustrate this, consider family F l again. It can be shown
using the square of the Euclidean distance to the SCE as a Liapunov function that every trajec-
tory starting in any state different from the SRE [p1,C,p2,C] = [1,1] will end up in the SCE
[p1,C,p2,C] = [0.37,0.37]—i.e. the limit set Lx is formed exclusively by the SCE for any x �=
SRE (see Fig. 1). This means that starting from any initial state x �= SRE, if K is sufficiently large
and n < K/l (i.e. if in Fig. 2 we consider the region to the left of a gray arrow that is sufficiently
to the right), the distribution of P x

n(F l ) will be tightly clustered around the SCE [0.37,0.37] and
will approach normality as n increases. Furthermore, statement (iii) says that, for any x �= SRE,
any δ > 0, and n = 0,1, . . . ,N < ∞, the proportion of values of P x

n(F l ) within a neighborhood
Bδ (SCE) of the SCE goes to 1 (in probability) as l → 0 and N · l → ∞. This is the long run.
Remember, however, that given any l, P x

n(F l ) will eventually converge to the unique SRE [1,1]
in the ultralong run (n → ∞). This is proved in the following section.

6. Asymptotic behavior

This section presents theoretical results on the asymptotic (i.e. ultralong run) behavior of the
BM system. Note that with low learning rates the system may take an extraordinarily long time
to reach its ultralong-run behavior (e.g., see bottom row in Fig. 2).

Proposition 2. In any 2 × 2 game, assuming players’ aspirations are different from their respec-
tive payoffs (ui(d) �= Ai for all i and d) and below their respective maximin,1 the BM process

1 Maximin is the largest possible payoff players can guarantee themselves in a single-stage game using pure strategies.
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P n converges to an SRE with probability 1 (the set formed by all SREs is reached with prob-
ability 1). If the initial state is completely mixed, then every SRE can be reached with positive
probability.

Proposition 3. In any 2 × 2 game, assuming players’ aspirations are different from their respec-
tive payoffs and above their respective maximin:

(i) If there is any SRE then the BM process P n converges to an SRE with probability 1 (the set
formed by all SREs is reached with probability 1). If the initial state is completely mixed,
then every SRE can be reached with positive probability.

(ii) If there is no SRE then the BM process P n is ergodic2 with no absorbing state.

Corollary to Proposition 3. Consider any of the three 2 × 2 social dilemma games: Prisoner’s
Dilemma, Chicken, and Stag Hunt (Macy and Flache, 2002). Assuming players’ aspirations are
different from their respective payoffs and above their respective maximin:

(i) The BM process P n is ergodic.
(ii) There is an SRE if and only if mutual cooperation is satisfactory for both players. In that case,

the process converges to the unique SRE (i.e. certain mutual cooperation) with probability 1.

Since most BM systems end up converging to an SRE in the ultralong run, but their transient
dynamics with slow learning are governed by their associated ODE, mathematical results that
relate SREs with the solutions of the ODE can be particularly useful. The following proposition
shows that the Nash equilibrium concept is key to determining the stability of SREs under the
associated ODE.

Proposition 4. Consider the BM process P n and its associated ODE (Eq. (2) or (3)) in any 2×2
game:

(i) All SREs whose associated outcome is not a Nash equilibrium are unstable.
(ii) All SREs whose associated outcome is a strict Nash equilibrium where at least one unilateral

deviation leads to a satisfactory outcome for the non-deviating player are asymptotically
stable (i.e. they are SCEs too).

Thus, our analysis adds to the growing body of work in learning game theory that supports the
general principle that to assess the stability of outcomes in games, it is important to consider
not only how unilateral deviations affect the deviator, but also how they affect the non-deviators.
Outcomes where unilateral deviations hurt the deviator (strict Nash) but not the non-deviators
(protected) tend to be the most stable. In the particular case of reinforcement learning with fixed
aspirations, an additional necessary condition for the stability of an outcome is, of course, that
every player finds the outcome satisfactory. Remark: Proposition 4 can be strengthened for the
special case where all stimuli are positive (Sastry et al., 1994; Phansalkar et al., 1994).

2 Following Norman (1968, p. 67), by ‘ergodic’ we mean that the sequence of stochastic kernels defined by the n-step
transition probabilities of the Markov process associated with the BM system converges uniformly to a unique limiting
kernel independent of the initial state. Intuitively, this means that the asymptotic probability distribution over the states
of the system (i.e. the distribution of P n when n → ∞) is unique and does not depend on the initial state.
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7. Extensions

The theoretical results on asymptotic behavior presented in this paper derive from the theory
of distance diminishing models developed by Norman (1968; 1972), which can also be applied to
2-player games with any finite number of strategies without losing much generality. The results
on transient behavior when learning takes place by small steps (which derive from the theory of
stochastic approximation, Benveniste et al., 1990; Kushner and Yin, 1997, and the theory of slow
learning, Norman, 1972) and Proposition 4 (which derives from Sastry et al., 1994) can be easily
extended to any finite game.

More immediately, every proposition in this paper can be directly applied to finite populations
from which two players are randomly3 drawn repeatedly to play a 2×2 game. Indications on how
to prove this are given in Appendix A. As an example, assume that there is a finite population
of BM reinforcement learners with aspirations above their respective maximin and below their
payoff for mutual cooperation, who meet randomly to play a 2 × 2 social dilemma game (Macy
and Flache, 2002). Then, every player in the group will end up cooperating with probability 1 in
the ultralong term. The more players in the group, the longer it takes the group to reach universal
cooperation.

Another possible extension to the BM model consists in allowing players to suffer from ‘trem-
bling hands’ (Selten, 1975): after deciding which action to undertake, each player i might select
the wrong action with a small probability εi > 0 in each iteration. This feature generates a new
stochastic process which is ergodic in any 2 × 2 game.4 Proposition 1 applies to this extension
too.

As for the general existence of SREs and SCEs in games with any finite number of players
and strategies, note that both solution concepts require that the expected change in every player’s
strategy is zero—i.e. they are both critical points of the expected motion of the system. This is an
important property since if any system converges to a state, that state must be a critical point of
its expected motion. The following shows that every game has at least one such critical point for
a very wide range of models. Consider the extensive set of models of normal-form games where
every player’s strategy is determined at any time-step by the probability of undertaking each of
their possible actions. Assume that, after any given outcome d in time step n, every player i

(i = 1,2, . . . ,m) updates her strategy pi using an adaptation rule pn+1
i = rd

i (pn), where rd
i (pn)

is continuous for every d and every i. Let us call such adaptation rules continuous. Note that BM
adaptation rules are continuous, and consider the following proposition.

Proposition 5. Assuming that players’ adaptation rules after every possible outcome of the game
are continuous, every finite normal-form game has at least one critical point (a strategy profile
where the expected change of every player’s strategy is zero).

8. Conclusions

This paper has focused on the study of games played by individuals who use one of the
most widespread forms of learning in nature: reinforcement learning. This analysis (and related

3 The important point here is that, at any time, every player must have a positive probability of being selected to play
the game.

4 This statement can be proved using Theorem 2.2 in Norman (1968, p. 67). We exclude here the meaningless case
where the payoffs for some player are all the same and equal to her aspiration.
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literature cited before) has shown that the outcome of games played by reinforcement learners
can be substantially different from the expected outcomes when the game is played by perfectly
rational individuals with common knowledge of rationality. As an example, cooperation in the
repeated Prisoner’s Dilemma is not only feasible but also the unique asymptotic outcome in many
cases. More generally, outcomes where players select dominated strategies can emerge through
social interaction and persist through time.

The present paper has characterized not only the asymptotic behavior of the Bush–Mosteller
model of reinforcement learning, but also its transient dynamics. The study of the transient dy-
namics of learning algorithms has been neglected until recently due to the complexity of its
formal analysis. Thus, most of the literature in learning game theory focuses on asymptotic equi-
libria. This may be insufficient since, as this paper has illustrated, the transient dynamics of
learning algorithms may be substantially different from their asymptotic behavior. In broader
terms, the importance of understanding the transient dynamics of formal models of social in-
teractions is clear: social systems tend to exhibit an impressive ability to adapt and reorganize
themselves structurally, meaning that most likely it is not asymptotic behavior that we observe
in the real world.
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Appendix A. Proofs

Notation. Since most of the proofs follow Norman (1968) we adopt his notation. The state of the
system in iteration n, characterized in the BM model by the mixed-strategy profile in iteration n,
is denoted Sn. The set of possible states is called the state space and denoted S. The realization
of both players’ decisions in iteration n is referred to as an event and denoted En. The set of
possible events is called the event space and denoted E. Sn and En are to be considered random
variables. In general, s and e denote elements of the state and event spaces, respectively. The
function of S into S that maps Sn into Sn+1 after the occurrence of event e is denoted fe(·).
Thus, if En = e and Sn = s, then Sn+1 = fe(s). Let Tn(s) be the set of values that Sn+1 takes on
with positive probability when S1 = s. Let us say that a state s is associated with an event e if s is
a pure state (where all probabilities are either 0 or 1) and the occurrence of e pushes the system
towards s from any other state. In any system, only one state is associated with a certain event,
but the same state may be associated with several events. Finally, use d(A,B) for the minimum
Euclidean distance between two subsets A and B of S

d(A,B) = inf
s∈A, s′∈B

d(s, s′).

Lemma 1. Assuming players’ aspiration levels are different from their respective payoffs, the
2-player 2-strategy BM model can be formulated as a strictly distance diminishing model (Nor-
man, 1968, p. 64).

Proof. Proving that the BM model can be formulated as a strictly distance diminishing model
involves checking that hypotheses H1 to H8 in Norman (1968) hold. Define the state of the sys-
tem Sn in iteration n in the BM model as the mixed-strategy profile in iteration n. The state space
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is then the mixed-strategy space of the game, and the event space E is the space of pure-strategy
profiles, or possible outcomes of the game; consider also the Euclidean distance in S. Having
stated that, hypotheses H1 to H6 are almost immediate. H7 for strictly distance diminishing
models reads

H7. sup
s �=s′

d(fe(s), fe(s
′))

d(s, s′)
< 1 for all e ∈ E.

Given that learning rates are strictly within 0 and 1 and stimuli are always non-zero numbers
between −1 and 1 (since players’ aspiration levels are different from their respective payoffs by
assumption), it can easily be checked that H7 holds. The intuitive idea is that after any event e,
the distance from any state s to the pure state se associated with event e is reduced by a fixed
proportion in each of the components of s which is not already equal to the corresponding com-
ponent in se . For the strict inequality in H7 to hold, it is instrumental that every state of the
system (except at most one for each event) changes after any given event occurs (i.e. fe(s) �= s

for all s �= se). The assumption that players’ aspiration levels are different from their respective
payoffs guarantees such a requirement. Without that assumption, H7 does not necessarily hold
in its strict form. Finally, H8 reads:

H8. For any s ∈ S there is a positive integer k and there are k events e1, . . . , ek such that

sup
s �=s′

d(fe1,...,en(s), fe1,...,en(s
′))

d(s, s′)
< 1 and P(Ej = ej , 1 � j � n | S1 = s) > 0,

where fe1,...,en(s) = fen(fen−1(. . . (fe1(s))).

H8 is immediate having proved H7 in its strict form, since at least one event is possible in any
state. �
Lemma 2. Consider any 2-player 2-strategy BM system where players’ aspiration levels differ
from all their respective payoffs. Let se be the state associated with event e. If e may occur when
the system is in state s (Pr{En = e | Sn = s} > 0), then

lim
n→∞d

(
Tn(s), se

) = 0.

Proof. The BM model specifications guarantee that if event e may occur when the system is
in state s, then it will also have a positive probability of happening in any subsequent state.
Mathematically,

Pr{En = e | Sn = s} > 0 → Pr{En+t = e | Sn = s} > 0 for any t � 0.

This means that any finite sequence of events {e, e, . . . , e} has positive probability of happening.
Note now that if the system is in state s �= se and event e occurs, the distance from s to se is
reduced by a fixed proportion in each of the components of s which is not already equal to the
corresponding component in se . This proportion of reduction is, for each player, the product of
the player’s absolute stimulus magnitude generated after e and the player’s learning rate. Both
proportions are strictly between 0 and 1 since players’ aspiration levels are different from their
respective payoffs by assumption. Let k be the minimum of those two proportions. Imagine then
that event e keeps occurring, and note the following bound:

d
(
Tn(s), se

)
� (1 − k)n · d(s, se).
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The proof is completed taking limits in the expression above

0 � lim
n→∞d

(
Tn(s), se

)
� lim

n→∞(1 − k)n · d(s, se) = 0. �
Proof of Proposition 1. Statement (i) is an application of Theorem 1 in Chap. 2 of Benveniste
et al. (1990, p. 43). Statement (ii) follows from Norman (1972, Theorem 8.1.1, p. 118). The
assumptions to apply this theorem are listed in Norman (1972, p. 117). Here we show that with
the hypotheses in Proposition 1, all these assumptions hold. In this section, following Norman
(1972), the state of the system in iteration n is denoted Xn, and the letter θ denotes the learning
rate. Since the state space Iθ = I is independent of θ , (a.1) is satisfied. Hθ

n = ΔXθ
n/θ does not

depend on θ , so (a.2) and (a.3) hold. All components of the functions w(x) = E(Hθ
n | Xθ

n = x)

and s(x) = E((Hθ
n − w(x))2 | Xθ

n = x) are polynomials, so every assumption (b) is satisfied.
Finally, since Hθ

n does not depend on θ the supremum over θ can be omitted in (c), and also
the module of each of the components of Hθ

n is bounded by the maximum learning rate, so (c)
is also satisfied. Thus Theorem 8.1.1 is applicable. Finally, Statement (iii) is an application of
Theorem 4.1 in Chap. 8 of Kushner and Yin (1997). �
Proof of Proposition 2. Proposition 2 follows from Norman (1968, Theorem 2.3, p. 67), which
requires the model to be distance-diminishing and one extra assumption H10.

H10. There are a finite number of absorbing states a1, . . . , aN , such that, for any s ∈ S, there is
some aj (s) for which

lim
n→∞d

(
Tn(s), aj (s)

) = 0.

Given the assumptions of Proposition 2, Lemma 1 can be used to assert that the BM model is
distance diminishing, with associated stochastic processes Sn and En. Proving that H10 prevails
will then complete the proof. The proof of H10 rests on the following three points:

(a) If in state s there is a positive probability of an event e occurring, then, applying Lemma 2:

lim
n→∞d

(
Tn(s), se

) = 0,

where se is the state associated with the event e.
(b) The state se associated with a mutually satisfactory (MS) event e is absorbing. Note also that

there are at most four absorbing states.
(c) From any state there is a positive probability of playing a MS event within three iterations.

Points (a) and (b) are straightforward. To prove (c) we define strictly mixed strategies as those
that assign positive probability to both actions, and mixed states as states where both players’
strategies are strictly mixed. Note that after an unsatisfactory event, every player modifies her
strategy so the updated strategy is strictly mixed, and that strictly mixed strategies will always
remain so.

Since players’ aspiration levels are below their respective maximin by assumption, there is at
least one MS event. Hence from any mixed state there is a positive probability for a MS event to
happen. We focus then on non-mixed states where no MS event can occur in the first iteration.
This implies that the event in the first iteration is unsatisfactory for at least one player, so at least
one player will have a strictly mixed strategy in the second iteration. Without loss of generality,
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let us say that player 1 has a strictly mixed strategy in the second iteration. If player 2’s strategy
were also strictly mixed, then the state in the second iteration would be mixed, and a MS event
could occur. Imagine then that the state in the second iteration is not mixed. Given that player 1’s
aspiration is below its maximin, there is a positive probability that the event in iteration 2 will be
satisfactory for player 1. If such a possible event is also satisfactory for player 2, an MS event
has occurred. If not, then both players will have a strictly mixed strategy in iteration 3, so a MS
event could happen in iteration 3. This finishes the proof of point (c).

The proof of the fact that every SRE can be reached with positive probability if the initial
state is completely mixed rests on two arguments: (a) there is a strictly positive probability that
an infinite sequence of any given MS event e takes place (this can be proved using Theorem 52
in Hyslop (1965, p. 94)), and (b) such an infinite run would imply convergence to the associated
(SRE) state se. We also provide here a theoretical result to estimate with arbitrary precision the
probability L∞ that an infinite sequence of a MS event e = (d1, d2) begins when the system is in
mixed state p = (p1,d1 ,p2,d2).

L∞ = lim
n→∞

n∏
t=0

[
1 − (1 − p1,d1)

(
1 − l1s1(d1)

)t][1 − (1 − p2,d2)
(
1 − l2s2(d2)

)t]
.

The following result can be used to estimate L∞ with arbitrary precision.
Let Pk = ∏k−1

t=0 (1 − xyt ) and let P∞ = limk→∞ Pk . Then, for x, y ∈ (0,1),

Pk > P∞ > Pk

(
1 − xyk

1 − y

)
.

We are indebted to Professor Jörgen W. Weibull for discovering and providing the lower bound
in this result. �
Proof of Proposition 3. Each statement of Proposition 3 will be proved separately.

Statement (i) is an immediate application of Theorem 2.3 in Norman (1968, p. 67), which
requires the model to be distance-diminishing and the extra assumption H10 (see proof of Propo-
sition 2). Having proved in Lemma 1 that the model is distance-diminishing, we prove here that
H10 holds. The proof of H10 rests on the same three points (a)–(c) exposed in the proof of Propo-
sition 2. The terminology defined there is also used here. Points (a) and (b) are straightforward.
To prove (c), remember that after an unsatisfactory event, every player modifies her strategy so
the updated strategy is strictly mixed, and that strictly mixed strategies always remain so. By
assumption, there is at least one absorbing state, which means that there must be at least one MS
event. This implies that from any mixed state there is a positive probability for a MS event to
happen.

Since players’ aspirations are above their respective maximin, given any action for player i,
there is always an action for her opponent such that the resulting event would be unsatisfactory
for player i. In other words, if one of the players has a strictly mixed strategy, then there is
a positive chance that the system will be in a mixed state in the next iteration. We focus then
on states where no player has strictly mixed strategies and a MS event cannot occur in the first
iteration. This implies that the event in the first iteration is unsatisfactory for at least one player,
who will have a strictly mixed strategy in the second iteration and, as just shown, this implies
a positive probability that the system will be in a mixed state in the third iteration. The proof of
statement (i) is then finished.
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Statement (ii) follows from Theorem 2.2 in Norman (1968, p. 66), which requires the model
to be distance-diminishing and one extra assumption H9.

H9. lim
n→∞d

(
Tn(s), Tn(s

′)
) = 0 for all s, s′ ∈ S.

Having proved in Lemma 1 that the model is distance-diminishing, we prove here that H9
holds. Since, by assumption, there are no absorbing states, there cannot be MS events. This
implies that the event in the first iteration is unsatisfactory for at least one player, who will have a
strictly mixed strategy in the second iteration. As argued in the proof of statement (i), this implies
a positive probability that the system will be in a mixed state in the third iteration. Therefore at the
third iteration any event has a positive probability of happening, so we can select any one of them,
the state se associated with it, and then, by Lemma 2, we know that limn→∞ d(Tn(s), se) = 0 for
any state s, so H9 holds. �
Proof of Proposition 4. The reasoning behind this proof follows Sastry et al. (1994). State-
ment (i) can be proved considering one player i who benefits by deviating from the SRE by
increasing her probability pi,q to conduct action q . The expected change in probability pi,q

can then be shown to be strictly positive for all pi,q > 0 while keeping the other player’s strat-
egy unchanged. Statement (ii) can be proved considering the Jacobian of the linearization of
ODE (2). Without loss of generality, assume that Di = {A,B} and the certain outcome at the
SRE is dSRE = (A,A). Choose p1,B and p2,B as the two independent components of the system,
so the SRE is [p1,B,p2,B ] = [0,0]. The Jacobian J at the SRE is then as follows:

J =
[

l1(δ(s1(B,A)) − s1(A,A)) l1 · δ(−s1(A,B))

l2 · δ(−s2(B,A)) l2(δ(s2(A,B)) − s2(A,A))

]
,

where δ(x) =
{

0 if x < 0,

x if x � 0.

It is then straightforward that if dSRE = (A,A) is a mutually satisfactory (si(A,A) > 0) strict
Nash equilibrium (s1(A,A) > s1(B,A); s2(A,A) > s2(A,B)) and at least one unilateral devia-
tion leads to a satisfactory outcome for the non-deviating player (s1(A,B) � 0 or s2(B,A) � 0),
then the two eigenvalues of J are negative real, so the SRE is asymptotically stable. �
Notes to extend the theoretical results to populations of players. All the lemmas and propo-
sitions in this paper can be easily extended to finite populations from which two players are
randomly drawn to play a 2 × 2 game taking into account the following points: (1) the state of
the system Sn in iteration n is the mixed-strategy profile of the whole population. (2) An event
En in iteration n comprises an identification of the two players who have played the game in
iteration n and their decisions. (3) Pure states are now associated (in the sense given in the no-
tation of Appendix A) with chains of events, rather than with single events. A pure state s is
associated with a finite chain of events c (where every player must play the game at least once)
if the occurrence of c pushes the system towards s from any other state.

Proof of Proposition 5. Let Θ be the mixed-strategy space of the finite normal-form game. The
proof consists in applying Brouwer’s Fixed Point theorem to the function W (p) ≡ E(P n+1 |
P n = p) that maps the mixed-strategy profile p ∈ Θ to the expected mixed-strategy profile W (p)

after the game has been played once and each player has updated her strategy pi accordingly.
Since the mixed-strategy space Θ is a non-empty, compact, and convex set, it only remains to
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show that W :Θ → Θ is a continuous function. Let wi (p) be the ith component of W (p), which
represents player i’s expected strategy for the following iteration. Therefore

wi (p) =
∑
d∈D

Pr{d} · rd
i (p) =

∑
d∈D

(∏
i∈I

pi,di

)
· rd

i (p).

Since all rd
i (p) are continuous for every d and every i by hypothesis, W (p) is also continuous.

Thus, applying Brouwer’s fixed-point theorem, we can state that there is at least one p∗ ∈ Θ

such that W (p∗) = p∗. This means that the expected change in all (pi,j )
∗ (probability of player

i following her j th pure strategy) is zero. �
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