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Abstract

We consider sampling best response decision protocols with statistical infer-
ence in population games. Under these protocols, a revising agent observes the
actions of k randomly sampled players in a population, estimates from the sam-
ple a probability distribution for the state of the population (using some inference
method), and chooses a best response to the estimated distribution. We formu-
late deterministic approximation dynamics for these protocols. If the inference
method is unbiased, strict Nash equilibria are rest points, but they may not be
stable. We present tests for stability of pure equilibria under these dynamics. Fo-
cusing on maximum-likelihood estimation (sampling best response dynamics), our
results suggest a ranking for strict Nash equilibria. The stability of equilibria under
sampling best response dynamics is consistent with experimental evidence in tacit
coordination or weakest-link games, capturing the effect of strategic uncertainty and its
sensitivity to the number of players and to the cost/benefit ratio.
JEL classification numbers: C72, C73.

Keywords: Statistical inference; Sampling best response; Stability; Strict Nash; weakest-
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1 Introduction

In this paper we study the local stability of pure equilibria under sampling best response
dynamics with statistical inference (Salant & Cherry, 2020; Sawa & Wu, 2023), which incor-
porate statistical inference into the sampling best response decision protocol introduced
by Sandholm (2001). We consider a population of agents who repeatedly make de-
cisions that affect each other (i.e. agents choose an action or pure strategy in a stage
game). Specifically, the payoff obtained by an agent who plays strategy ai depends on

*Correspondence to: Department of Industrial Organization, Universidad de Valladolid, Dr. Mergelina
s/n, 47011 Valladolid, Spain. e-mail: segismundo.izquierdo@uva.es.
Abbreviations. SBR: Sampling Best Response; BR: Best Response; BEP: Best Experienced Payoff.
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the prevalence of each strategy in the population. Under sampling best response dynamics
with statistical inference, agents follow this procedure to revise their current strategy:

1. Obtain a sample of (the strategies used by) k players, randomly sampled from the
population of agents.

2. Use that sample, together with an inference method, to estimate a probability
distribution over population states (i.e., an estimate).

3. Calculate the expected payoff to each strategy, according to the estimated proba-
bility distribution over population states.

4. Adopt one of the strategies with maximum expected payoff.

If the inference method estimates that the prevalence of each strategy in the pop-
ulation is the same as its prevalence in the observed sample, we obtain, as a special
case, the Sampling Best Response (SBR) protocol (Osborne & Rubinstein, 2003; Oyama,
Sandholm, & Tercieux, 2015; Sandholm, 2001). This case corresponds to the maximum
likelihood estimate of the population state from the sample, which is a point estimate
or degenerate distribution.

The rest points or equilibria of the SBR process have been named sampling equilibria
(Osborne & Rubinstein, 2003) and also action-sampling equilibria (Arigapudi, Heller, &
Milchtaich, 2021; Sethi, 2021).1 Salant and Cherry (2020) (see also Sawa and Wu (2023))
introduced a generalization of these action-sampling equilibria by considering agent
heterogeneity and different estimation methods of the population state from the sample
(other than taking the sampled empirical distribution as the estimated population state).
For this generalization, they used the term sampling equilibria with statistical inference
(SESI).

Regarding the stability of these equilibria, Sandholm (2001) and Oyama et al. (2015)
provided conditions for (almost) global asymptotic stability under SBR dynamics.2

Sawa and Wu (2023) extended some of these results to sampling best response dy-
namics with statistical inference and heterogeneous preferences, for unbiased inference
methods in games with two strategies. These conditions for global stability are all
related to γ-dominance. In a single-population game, a strategy is γ-dominant (with
γ ∈ [0, 1]) if it is the unique best response whenever the fraction of players using it is
greater than or equal to γ (Morris, Rob, & Shin, 1995).

Sandholm (2001) showed that, under a SBR protocol with sample size k ≥ 2, if there
exists a 1

k -dominant strategy, 3 then it corresponds to an almost globally asymptotically

1The term action-sampling equilibrium has been used to distinguish the equilibria considered here from
those corresponding to other decision protocols based on sampling, such as the best-experienced-payoff
protocol, which selects the strategy that performs best in a (sampled) battery of trials. This protocol gives
rise to the so-called payoff-sampling equilibria or, more generally, best-experienced-payoff equilibria.

2Intuitively, if a state is almost globally asymptotically stable, it means that, in large populations, the
process will converge to this state with high probability from almost every initial condition.

3Note that being 1
2 -dominant is a necessary condition to be 1

k -dominant for any k ≥ 2.
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stable equilibrium. Being 1
k -dominant (for any k ≥ 2) is a refinement of strict Nash

equilibrium that may be satisfied by at most one equilibrium in a game (with the
condition becoming more stringent as k grows).4

Oyama et al. (2015) formulated deterministic dynamics (more precisely, a differential
inclusion) that approximate well the population state dynamics under SBR protocols in
large populations. Oyama et al. (2015) showed that, in order to find the set of surviving
strategies under a SBR dynamic starting from interior initial conditions, some strategies
can be eliminated iteratively. If the elimination process leads to one single surviving
strategy, it corresponds to an almost globally asymptotically stable strict Nash state. The
conditions for a strict Nash state to be almost globally asymptotically stable in Oyama
et al. (2015) are more general than in Sandholm (2001), with the elimination process
requiring some proper subset of strategies to be 1

2 -dominant (i.e., some proper subset
of strategies J such that the best responses to any state x satisfying

∑
i:ai∈J xi ≥

1
2 belong

to J).
Instead of studying conditions for global stability (of one strict Nash equilibrium)

under SBR dynamics, in this paper we analyze the local asymptotic stability of every
monomorphic rest point under sampling best response dynamics with statistical infer-
ence (and, as a special case, of every strict Nash equilibrium under SBR dynamics). We
achieve this by characterizing the Jacobian of the dynamics at such rest points, leading
to one test for instability and another test for asymptotic stability.

Focusing on the specific case of SBR dynamics, our local stability analysis can be
used to provide a ranking for strict Nash equilibria. By discriminating between different
strict Nash equilibria based on their stability under SBR, our approach complements
previous approaches based on (almost) global asymptotic stability, which can single out
at most one equilibrium from the rest. The following example illustrates some of our
contributions.

Example 1.1. Consider the following two-player symmetric game, with strategy set
{a, b, c} and payoffmatrix to the row player:

U1 =

a b c
a 3 8 0
b 0 9 0
c 0 0 4

Figure 1 shows the best response dynamics for this game played in one single
population. There are three strict Nash equilibria, each corresponding to one of the
three strategies. Most equilibrium selection methods do not distinguish between the
three strict Nash equilibria of this game. Also, no strategy or proper subset of strategies
is 1

2 -dominant (see figure 1), so the results of Oyama et al. (2015) for SBR dynamics do

4In the context of population games, the term ”Nash equilibrium” is often used to refer to a Nash state
(see section 2.1).
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Figure 1: Best response dynamics in the game with payoffmatrix U1. In the figures, background colors
represent speed of motion: red is fastest, blue is slowest. Isolated rest points are represented with circles:
red if the rest point is asymptotically stable, gray if it is stable (but not asymptotically stable), and white if
it is unstable. Connected components of rest points are represented with solid lines, colored according to
their stability in the same way as rest points. The dashed black lines in this figure separate the basins of

attractions of each asymptotically stable rest point.

not apply here. However, using the methods developed in this paper, the following
properties of SBR dynamics can be easily derived (see figure 2):

• No equilibrium is asymptotically stable for k = 1.

• The first equilibrium (corresponding to strategy a) is unstable for k = 2 and
asymptotically stable for k ≥ 3.

• The second equilibrium (corresponding to strategy b) is unstable for k ∈ {2, 3} and
asymptotically stable for k ≥ 5. Its stability for k = 4 depends on how ties between
alternative best response strategies are resolved. Figures 2(iii) and 2(iv) show SBR
dynamics for k = 4 under two different tie breakers.5

• The third equilibrium (corresponding to strategy c) is unstable for k ∈ {2, 3} and
asymptotically stable for k ≥ 4.

These results suggest a rank number for each strict equilibrium, according to the
lowest sample size that guarantees asymptotic stability, with the rank of the (top-
ranking) first equilibrium being 3, the rank of the second equilibrium being 5, and the
rank of the third equilibrium being 4. The rank indicates how robust each equilibrium is

5Tie breakers are defined in section 2.2.
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(i) k = 2, any tie breaker (ii) k = 3, any tie breaker

(iii) k = 4, uniform tie breaker (iv) k = 4, stick-uniform tie breaker

(v) k = 5, uniform tie breaker (vi) k = 10, uniform tie breaker

Figure 2: Sampling best response dynamics for different values of k and different tie breakers, for the
game with payoffmatrix U1.
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to small-size SBR protocols: the lower the rank number, the more robust the equilibrium
is.6

The type of stability-based discrimination between strict Nash equilibria proposed
here cannot be achieved using most evolutionary dynamics that are guided by exact
(vs. estimated) expected payoffs: strict Nash equilibria are asymptotically stable under
most dynamics based on exact expected payoffs because, assuming continuity of the
payoff functions, there is a neighborhood of every strict Nash state in which each of the
strategies making up the strict equilibrium profile is the corresponding player’s unique
best response to the population state, so each of those strategies is “locally strictly
dominant” in expected payoffs for the player that is using it.

A related protocol that is also based on sampling but which does not make estimates
of the population state, and under which strict Nash equilibria may also be unstable,
is the payoff-sampling protocol proposed by Osborne and Rubinstein (1998) and Sethi
(2000) (more generally, the best experienced payoff protocol of Sandholm, Izquierdo, and
Izquierdo (2020)). Under this protocol, revising players test (some of) their available
strategies against random samples of co-players and choose the strategy that performed
best in the test. Many of the proofs in this paper are based on the methods developed
by Sandholm et al. (2020) and Izquierdo and Izquierdo (2022) to analyze the stability
of strict Nash equilibria under best experienced payoff dynamics (see also Arigapudi et
al. (2021)).

The remaining of the paper is structured as follows. Section 2 introduces population
games and derives the mean dynamic differential equations for sampling best response
protocols with statistical inference. In section 3 we derive the Jacobian of the dynamics at
monomorphic equilibria and present two tests based on the Jacobian: one for asymptotic
stability and one for instability. In this section we also extend our tests of stability to
λ-sampling dynamics (section 3.6) and analyze the special case in which the sample
size equals 1 (section 3.7). Section 4 proposes a rank for strict Nash equilibria based
on asymptotic stability under SBR dynamics, and studies the implications of the rank
number of an equilibrium. In section 5 we apply our results to a practical case, namely
tacit coordination (or weakest-link) games, and show that our analysis captures some
interesting experimental features of these games. Lastly, in section 6 we present some
conclusions. Most of the proofs are relegated to an appendix.

All figures in this paper can be easily replicated with open-source freely available
software which performs exact computations of rest points and exact linearization
analyses7.

6In this particular example, the proposed ranking has a perfect rank correlation with a ranking based
on efficiency, but this is not necessarily the case in general. To see this, note that we can make the inefficient
equilibrium corresponding to strategy a be the most efficient one by adding the same value to each payoff
in the first column of U1, and the SBR dynamics would not change.

7EvoDyn-3s (Izquierdo, Izquierdo, & Sandholm, 2018) for figures 1-11, and SBR-TCG
(https://doi.org/10.5281/zenodo.7933941) for figure 13.
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2 Sampling best response with statistical inference

2.1 Population games

For notational simplicity, we focus here on symmetric games played in one population,
although our results can be extended to multi-population (symmetric or asymmetric)
games.

Following Sandholm (2010), we consider a unit-mass population of agents who
play a game with strategy set A = {a1, ..., an}, containing n pure strategies or actions.
Agents play pure strategies, and aggregate behavior in the population is described by
a population state x = (xi)n

i=1 ∈ ∆A, with ∆A ≡ {x ∈ Rn
+ :

∑n
i=1 xi = 1}, where component xi

represents the fraction of agents in the population using strategy ai ∈ A. The standard
basis vector ei ∈ ∆A represents the pure (monomorphic) state at which all agents play
strategy ai.

We assume that there is a continuous expected-payoff function π : ∆A → R
n such

that πi(x) is the expected payoff to (a player using) strategy ai at state x. If es is a strict
Nash equilibrium state, i.e., if πs(es) > πi(es) for every i , s, we say that strategy as is a
strict Nash strategy.

A special case of this framework corresponds to a large population of agents who are
randomly matched to play a p-player symmetric game with payoff function U : Ap

→ R,
where U(ai; a j1 , . . . , a jp−1) represents the payoff obtained by a strategy-ai player whose
opponents play strategies a j1 , . . . , a jp−1 . When p = 2, we sometimes write Ui j instead of
U(ai; a j). The symmetry assumption implies that the value of U does not depend on
the ordering of the last p − 1 arguments. In this setting, the expected payoff function
to strategy ai at state x is the usual extension of U to the simplex ∆A, i.e., πi(x) =∑

ā∈A(p−1)

(∏n
j=1(x j)I j(ā)

)
U(ai; ā), where ā is a (p − 1)-tuple of strategies (one for each co-

player), and the exponent I j(ā) is the number of occurrences of strategy a j in ā. The
simplest case corresponds to symmetric 2-player normal form games with payoffmatrix
(Ui j), for which πi(x) =

∑n
j=1 Ui jx j.

We can establish the following links between the population game approach applied
to a p-player game with random (or complete) matching, and traditional game theory.
First, the expected payoff to strategy ai at population state x coincides in the traditional
setting with the expected payoff to a player using strategy ai whose opponents play
mixed strategy x. Second, es is a strict Nash state in the population game if and only
if strategy profile (as, as, ..., as) is a strict Nash equilibrium of the p-player game in the
traditional setting. Strict Nash states in a population game are usually also called strict
Nash equilibria, with the context indicating whether the term is referring to a population
state es or to a strategy profile.

2.2 Sampling Best Response dynamics with statistical inference

Under a sampling best response decision protocol with statistical inference, a revising
agent observes the actions of k randomly-sampled players in a population, estimates
a probability distribution for the state of the population, and chooses a best-response
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action (one of the best-response actions, if there is more than one) according to the
estimated distribution of population states. The choice among optimal strategies is
made following some tie-breaking rule β.

Consider a sample of size k. Let a sample vector (or just a sample) z = (z1, ..., zn) ∈Nn
0 ,

with
∑n

i=1 zi = k, be a vector indicating the occurrences of each strategy in a sample of
size k, with z j corresponding to the number of occurrences of strategy a j in the sample.
LetNn,k

0 be the set of all possible sample vectors z of n strategies with sample size k. For
instance, if the number of strategies is n = 3 and the sample size is k = 2, we have that
the set of possible sample vectors is

Nn,k
0 =N

3,2
0 = {(2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), (0, 1, 1)}

At state x, the probability of obtaining sample z, Px(z), is given by the multinomial
distribution:

Px(z) =
(

k
z1, ... , zn

)
xz1

1 ... x
zn
n

with the convention that 00 = 1.
For each sample z ∈Nn,k

0 , an inference method G provides a probability distribution
over population states, called an estimate. For instance, under maximum likelihood
estimation, players who obtain sample z estimate the (unique) population state that
maximizes the probability Px(z) of obtaining sample z, which is the state z

k .
In general, an estimate is characterized by a generalized8 probability density function

gz over states with expected state x̄G(z) =
∫
∆A

x gz(x) dx and with expected payoff vector

πG(z) =
∫
∆A
π(x) gz(x) dx. For instance, under maximum-likelihood (G = ML), we have

the expected state x̄ML(z) = z
k and the expected payoff vector πML

i (z) = πi( z
k ), with the

payoff functions πi(·) considered in section 2.1.
An inference method G is unbiased (Salant & Cherry, 2020) if, for every sample z,

the expected state given the sample, x̄G(z), coincides with the empirical proportions z
k

observed in sample z, i.e., if x̄G(z) = z
k . Maximum likelihood is an unbiased inference

method that, given a sample z, assigns probability 1 to the single state z
k . Other inference

methods can assign to a sample z a non-degenerate distribution over states. Typically,
inference methods that combine the data from a sample z with previous beliefs or
information about the population state will not be unbiased.

Note that, for observed samples z with z j = 0, an unbiased inference method must
concentrate the estimated probability on states with x j = 0. In particular, if the sample
is monomorphic ( z

k = ei) then an unbiased estimate method assigns probability 1 to the

8In order to consider continuous and discrete (or mixed) distributions under the same notation, as
well as distributions with support on subsets of ∆A such as the faces of ∆A, we consider generalized
density functions that may use the Dirac delta function δ. For instance, the density function corresponding
to the maximum-likelihood estimate is given by gz(x) = δ(x − z

k ); if the estimate is discrete and assigns
positive probabilities to a finite set of states {(x)1, ..., (x)m}, with corresponding probabilities {p1, ..., pm}, then
gz(x) =

∑m
i=1 piδ(x − (x)i); and a probability distribution characterized by a density function fz(xi, x j) with

support on the edge of ∆A defined by xi + x j = 1 is extended to ∆A as gz(x) = fz(xi, x j)
∏

l∈A\{xi ,x j}
δ(xl).
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state x = ei (the state with xi = 1) and probability 0 to the set of states with xi < 1.
Consequently, for unbiased inference methods we have πG(k ei) = π(ei). We will use
this result later to show that, for unbiased inference methods, strict Nash states are rest
points of the considered dynamics.

To specify which best response action is chosen when several actions obtain the
maximum expected payoffmaxi πG

i (z), we consider tie-breaking rules β. A tie-breaking
rule β is a set of functions that indicate the probability βi j(π) with which a revising agent
using strategy ai and having expected payoff vector π ≡ (πh)n

h=1 switches to strategy
a j. We assume that revising agents select one of the strategies with the maximum
expected payoff (according to their inference method), so a tie-breaking rule must
satisfy βi j(π) = 0 if π j < maxh πh (i.e., it only places weight on the estimated maximum-
payoff strategies) and, for every i,

∑n
j=1 βi j(π) = 1 (i.e., a revising agent selects one of the

available strategies).
Well-known results of Benaı̈m and Weibull (2003) show that the behavior of a large

but finite population following the protocol described above is closely approximated
by the solution of its associated mean dynamic, a differential equation which describes
the expected motion of the population at each state. The mean dynamic for a sampling
best response protocol with inference method G, sample size k and tie-breaking rule β,
denoted by StatSBRG,k,β, is9

ẋi =
∑

z∈Nn,k
0

Px(z)

 n∑
h=1

xh βhi

(
πG(z)

) − xi (1)

where:

• Px(z) =
( k
z1, ... , zn

)
xz1

1 ... x
zn
n is the probability of obtaining sample z at state x.

• πG(z) is the vector of expected payoffs corresponding to inference method G when
observing sample z.

• βhi(π) is the probability with which a revising ah-strategist who obtains the vector
of expected payoffs π adopts strategy ai. This probability is i) 1 if strategy ai is
the only strategy with the maximum payoff in π, ii) 0 if strategy ai does not have
the maximum value in π, and iii) a number between 0 and 1, determined by the
tie-breaking rule, if strategy ai is not the only strategy with the maximum value in
π. In the examples, we will use the following tie breakers:

9For the specific case of SBR dynamics (i.e., for the maximum likelihood inference method), Oyama et
al. (2015) consider a k-sampling best response correspondence (instead of specific functions corresponding
to particular tie-breaking rules) and derive a differential inclusion for the dynamics (instead of a differential
equation adjusted to each tie-breaking rule). This approach allows to study properties that hold for every
tie-breaking rule, but it does not allow to study the effect of different tie-breaking rules on the stability of
an equilibrium, which can be relevant in our case (see e.g. figure 9).
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– uniform, which randomizes uniformly among all optimal strategies:

βi j(π) =

 1
#(argmaxk πk) if j ∈ argmaxk πk,

0 in any other case.

– stick-uniform, which selects the current strategy if it is optimal, and random-
izes uniformly among optimal strategies if the current strategy is not optimal:

βi j(π) =


1 if i = j ∈ argmaxk πk,

1
#(argmaxk πk) if i < argmaxk πk and j ∈ argmaxk πk,

0 in any other case.

– min, which selects the optimal strategy with the smallest index:

βi j(π) =

1 if j = min
(
argmaxk πk

)
,

0 in any other case.

Note that the differential flows in StatSBRG,k,β dynamics (right-hand side in (1)) are
polynomials of degree no greater than k + 1.

For the special case in which the tie-breaking rule is independent of the strategy
followed by the revising agent (i.e., if there is a function βi such that βhi(π) = βi(π) for
every h ∈ {1, ...,n}), the mean dynamic equations (1) simplify to:

ẋi =
∑

z∈Nn,k
0

Px(z) βi

(
πG(z)

)
− xi

And for the special case k = 1, the mean dynamic equations (1) for any unbiased
inference method reduce to

ẋi =

n∑
j=1

x j

n∑
h=1

xh βhi(π(e j)) − xi (2)

3 Stability of monomorphic rest points

3.1 Stationarity. Strict Nash states

At a monomorphic population state x = ei, the only sample that can be obtained is that
in which each of the k sampled players uses strategy ai, i.e., the sample z = k ei. This is
consequently the only sample that enters dynamics (1) at x = ei. It is then easy to see
that a monomorphic state ei is a rest point of dynamics (1) if and only if, for z = k ei:

• strategy ai obtains the maximum expected payoff under G, and

• if some other strategy also obtains that maximum payoff, strategy ai is selected.
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We can now state the following observation:

Observation 3.1. Strict Nash states are (monomorphic) rest points under StatSBRG,k,β dy-
namics for any unbiased inference method G.

Observation 3.1 follows from considering that, if the inference method G is unbiased,
then, at a monomorphic state es we have expected payoff vector πG(k es) = π(es). If es is
a strict Nash state, the strict Nash strategy as is then the only strategy that achieves the
maximum payoff in πG(k es). Consequently, the inflow (positive) and outflow (negative)
terms in dynamics (1) at state x = es (where xs = 1) are both 1 for strategy as, and both
0 for each of the other strategies, so ẋi = 0 for every strategy ai. If the inference method
is not unbiased, it is easy to see that strict Nash states may not be rest points of the
dynamics.

We now turn to analyzing the stability of monomorphic rest points under StatSBRG,k,β

dynamics. The following subsection provides a brief summary of the main mathematical
concepts we will use in our analysis.

3.2 Background on stability and linear stability

Consider a C1 differential equation ẋ = V(x) defined on a compact, convex set X ⊂ Rn

(in our case, X = ∆A) whose forward solutions (x(t))t≥0 do not leave X. State x∗ is a rest
point or equilibrium of the dynamics if V(x∗) = 0, so that the unique solution starting
from x∗ is stationary.

A rest point x∗ is Lyapunov stable if for every neighborhood O of x∗, there exists a
neighborhood O′ of x∗ such that every forward solution that starts in O′∩X is contained
in O. If x∗ is not Lyapunov stable it is unstable, and it is repelling (or a repellor) if there is
a neighborhood O of x∗ such that solutions from all initial conditions in O ∩ X leave O.

A rest point x∗ is attracting if there is a neighborhood O of x∗ such that all solutions
that start in O ∩ X converge to x∗. If a rest point x∗ is Lyapunov stable and attracting,
it is asymptotically stable. In this case, the maximal (relatively) open10 set of states in X
from which solutions converge to x∗ is called the basin of attraction of x∗. If the basin of
attraction of x∗ is X itself, we call x∗ globally asymptotically stable. If the basin of attraction
of x∗ contains the relative interior of X, we call x∗ almost globally asymptotically stable.

By the definition of the derivative, the value of V in a (relative) neighborhood O∩X
of a rest point x∗ can be approximated via

V(x) = 0 +DV(x∗)(x − x∗) + o(|x − x∗|)

where DV(x∗) is the Jacobian matrix of V (more precisely, the Jacobian of a C1 extension
of V to Rn such that the first-order partial derivatives of the component functions of the
extension are defined at x∗) evaluated at state x∗. The linear stability of x∗ can be analyzed
by considering the eigenvalues of DV(x∗) corresponding to those eigenvectors lying in
the tangent space TX = {z ∈ Rn :

∑
i zi = 0}. If all such eigenvalues have negative real

10A set is relatively open in X if it is the intersection of X with an open set in Rn.
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parts, then x∗ is linearly stable. If any of those eigenvalues has positive real part, then x∗

is linearly unstable. A linearly stable rest point is asymptotically stable, and solutions
starting near the rest point converge to it at an exponential rate (Perko, 2001; Sandholm,
2010).

3.3 Jacobian of StatSBRG,k,β dynamics at monomorphic rest points

Let us now consider the linear stability analysis of monomorphic rest points under
StatSBRG,k,β dynamics. To do this, we study the Jacobian of the dynamics at such
equilibrium states.

At states near a monomorphic state es, those samples z in which most players use
strategy as are most likely to happen. It is then convenient to rewrite the inflow terms
in (1),

IG,k,β
i ≡

∑
z∈Nn,k

0

Px(z)

 n∑
h=1

xhβhi

(
πG(z)

) ,
singling out the sample where only strategy as is observed, i.e., the sample z = k es,

and also the samples where strategy as has been observed exactly (k − 1) times (and
some other strategy a j , as has been observed exactly once), i.e. the (n − 1) samples
zs, j
≡ e j + (k− 1)es, for j , s. Doing so, and considering that es is a rest point, leads to the

following expression:

IG,k,β
i (x) = xk

s δis + k xk−1
s

∑
j,s

x j

 n∑
h=1

xhβhi

(
πG(zs, j)

) + f G,k,β
i (x) (3)

where δis is the Kronecker delta and where

f G,k,β
i (x) ≡

∑
z∈Nn,k

0 :zs<k−1

(
k

z1, ... , zn

)
xz1

1 ... x
zn
n

 n∑
h=1

xhβhi

(
πG(z)

) .
Note that

∂ f G,k,β
i
∂x j

(es) = 0, since the partial derivatives of all the monomials xz1
1 ... x

zn
n

in f G,k,β
i take the value 0 at es (this is so because, in each monomial, the sum of the

exponents of the variables that are not xs is at least 2, and those variables take the value
0 at es).

The terms of the Jacobian of the inflow function IG,k,β at a rest point x = es, denoted by

DIG,k,β(es), are consequently DIG,k,β
i j (es) ≡

∂IG,k,β
i
∂x j

(es) = kδis + kβsi(πG(zs, j)). This means that
the only relevant payoffs for a linear stability analysis of a monomorphic rest point es
under StatSBRG,k,β dynamics are πG

i (zs, j), for i, j ∈ {1, ...,n}. Furthermore, if we eliminate
coordinate xs by considering xs = 1 −

∑
i,s xi, we have that, for i, j , s, the terms of the
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corresponding (reduced) Jacobian of StatSBRG,k,β dynamics at the equilibrium es are:11

k βsi

(
πG(zs, j)

)
− δi j

Considering a rest point es and a tie-breaking rule β, let us define αk
i j as follows

(omitting in the notation the dependence of αk
i j on s,G and β):

αk
i j ≡ k βsi

(
πG(zs, j)

)
The terms of the reduced Jacobian are then αk

i j − δi j. A positive value αk
i j > 0 indicates

that sample zs, j = (k−1)es+e j leads a revising as-player who obtains such a sample (with
one a j-player) to adopt strategy ai with positive probability.

The stability of es depends on how the presence of other strategies in states near es
reinforce the growth of those same strategies. For any non-empty subset of strategies
J ⊆ A \ {as} and any strategy ai ∈ J, let αk

i·(J) ≡
∑

j:a j∈J α
k
i j. We can interpret αk

i·(J) as the
total growth support that strategy ai receives near es from the strategies in J (including
itself, via αk

ii). And let αk
·i(J) ≡

∑
j:a j∈J α

k
ji, which we can interpret as the total growth

support that strategy ai provides near es to the strategies in J.
Depending on how much growth support near es a strategy ai receives from (or

provides to) other strategies in a subset J containing ai, we have the following definitions,
which will be useful to analyze the stability of es.

Definition 1. Consider a StatSBRG,k,β dynamic and a rest point es, with associated strategy as.
Let J ⊆ A \ {as} be a non-empty subset of strategies other than as. A strategy ai ∈ J is:

• es-stabilizing in J (under the considered StatSBRG,k,β dynamic), if αk
·i(J) = 0.

• es-stabilized in J (under the considered StatSBRG,k,β dynamic), if αk
i·(J) = 0.

• Potentially es-stabilizing in J (under the considered StatSBRG,k,β dynamic), if αk
·i(J) ≤ 1.

• Potentially es-stabilized in J (under the considered StatSBRG,k,β dynamic), if αk
i·(J) ≤ 1.

3.4 Asymptotic stability

In this section we provide a condition that guarantees asymptotic stability of monomor-
phic rest points under StatSBRG,k,β dynamics. We then use this result to analyze the
stability of strict Nash equilibria under unbiased inference methods, and finally we
provide specific results for the maximum likelihood inference method (i.e., for SBR
dynamics).

Before analyzing local stability, we note that, if the game has a strictly dominant
strategy as, its associated state is globally asymptotically stable under every StatSBRG,k,β

dynamic. This follows from as being the unique best response at every state.

11For details, see the proof of proposition 3.2.
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Proposition 3.2. Let es be a monomorphic rest point under a StatSBRG,k,β dynamic. If no
strategy survives the iterated elimination12 of es-stabilizing strategies in A \ {as}, then es is
asymptotically stable. The same result holds for es-stabilized strategies.

The proof of proposition 3.2 proceeds by showing that, if no strategy survives iterated
elimination, then the Jacobian of dynamics (1) can be written (after eliminating strategy
as and after an adequate reordering of the strategies) as a triangular matrix whose
diagonal elements, which are then the eigenvalues of the Jacobian, are all negative.

Clearly, if all strategies other than as are es-stabilizing in A \ {as}, then the condition
in proposition 3.2 holds (we just need to consider one elimination step). Our two
next propositions are based on that result. Proposition 3.3 shows that, if the inference
method is unbiased, strict Nash states are asymptotically stable for sufficiently large
sample size. Proposition 3.4 applies to maximum likelihood estimation (i.e., to SBRk,β)
and establishes a sample size that guarantees asymptotic stability.

Proposition 3.3. Let es be a strict Nash equilibrium of a symmetric game. Under any
StatSBRG,k,β dynamic with unbiased inference method, es is a rest point and there is a finite k0
such that es is asymptotically stable for k > k0.

The proof of proposition 3.3 considers first that, given that es is a strict Nash state,
there is a relative neighborhood O around es in which as is the unique best response
to the population state. Next, it shows that, if the inference method G is unbiased,
then, given a sample zs, j = e j + (k − 1)es, the probability that the estimate gz assigns
to the set of states outside O must tend to zero as k grows. Eventually, as must be
the unique strategy obtaining the maximum payoff in any vector πG(zs, j) of estimated
payoffs. By proposition 3.2, es is then asymptotically stable, as all the other strategies
are es-stabilizing in A \ {as}.

Proposition 3.4. Let es be a strict Nash equilibrium of a symmetric game. If es is (1 − 1
k0

)-
dominant for some k0 ∈ N then es is asymptotically stable under every SBRk,β dynamic with
k ≥ k0.

The proof of proposition 3.4 considers that, if es is (1 − 1
k0

)-dominant, then as is the

unique best response at any state zs, j

k with k ≥ k0.
In the special case of symmetric two-player games, the following result provides an

explicit upper bound for the number of trials beyond which there is asymptotic stability.

Corollary 3.5. Let es be a strict Nash equilibrium of a two-player symmetric game with payof
matrix (Ui j). For every k > 1 + maxi,s, j,s

Ui j−Usj

Uss−Uis
, es is asymptotically stable under SBRk,β

dynamics.

If we apply corollary 3.5 to two-player two-strategy games, we find that a strict
Nash state e1 is asymptotically stable for every k > U11−U21+U22−U12

U11−U21
. It is also easy to

show that, for those values of k, e1 is (1 − 1
k )-dominant. Stability in the special case of

equality k = U11−U21+U22−U12
U11−U21

depends on the tie-breaking rule.

12For a formal description of the process of iterated elimination see Appendix A.1.
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Example 3.1. Voluntary exchange. Consider the following game, in which two people
have two items each, which they individually value in 1 unit, but which the other
person values in 3 units. Each of the players must decide how many of these items will
gift to the other person. For the three strategies {0, 1, 2}, corresponding to the number
of items each player gives to the other player, the payoffmatrix is:

U2 =

0 1 2
0 2 5 8
1 1 4 7
2 0 3 6

Clearly, choosing not to give any item (i.e., strategy 0) is a strictly dominant strategy.
This game is used by Osborne and Rubinstein (1998, example 5) to show that strictly
dominated strategies can be present at equilibria under payoff-sampling dynamics, and
by Sethi (2000, example 2) to show that dominant-strategy equilibria can be unstable and
that strictly dominated strategies can be present at asymptotically stable equilibria.13

In contrast with payoff-sampling protocols, sampling best response protocols with
statistical inference never choose a strategy that is strictly dominated by another pure
strategy, so such strategies disappear asymptotically. In this example, given that strategy
0 is strictly dominant, the state where every player uses 0 is a global attractor under
every StatSBRG,k,β dynamic (see figure 3 for SBRk,β dynamics).

3.5 Instability

In this section we provide sufficient conditions for monomorphic rest points to be
unstable, and even repelling, under StatSBRG,k,β dynamics.

Proposition 3.6. Let es be a monomorphic rest point under a StatSBRG,k,β dynamic.

• If no strategy is potentially es-stabilizing in S \ {as}, then state es is repelling.

• If some strategy survives the iterated elimination of potentially es-stabilizing strategies
in S \ {as}, then state es is unstable. The same result holds for potentially es-stabilized
strategies.

The proof of the first part of proposition 3.6, i.e., the repelling result, shows that,
under the indicated conditions, any small deviation from the equilibrium state es that
ends up in a small relative neighborhood of es will be amplified by the dynamics,
until the solution trajectory leaves that relative neighborhood. The proof of the second
part of proposition 3.6, i.e., the instability result, makes use of lower bounds on the
Perron-Frobenius eigenvalue of non-negative matrices to show that the Jacobian of the

13See also Mantilla, Sethi, and Cárdenas (2020, section 5.2), and Sandholm et al. (2020, example 5.1),
who prove that the dominant-strategy equilibrium of this game is repelling under a wide range of best
experienced payoff protocols.
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Figure 3: Sampling best response dynamics SBRk,β for the game with payoffmatrix U2, for any value of k
and any tie breaker β.

dynamics at es has (at least) one positive eigenvalue, corresponding to an eigenvector
in the tangent space of ∆A that goes from es into ∆A.

Corollary 3.7. Let es be a monomorphic rest point under a StatSBRG,k,β dynamic. If there is
some strategy ai (other than as) with αk

ii > 1, then es is unstable.

If we apply corollary 3.7 to SBR dynamics in two-player two-strategy games, we
find that a strict Nash state e1 is unstable for 2 ≤ k < U11−U21+U22−U12

U11−U21
. It is also easy to

show that for those values of k (if there are any), e1 is not (1− 1
k )-dominant, while it is so

for k > U11−U21+U22−U12
U11−U21

.

Example 3.2. Consider the following game, with strategy set {a, b, c} and payoffmatrix:

U3 =

a b c
a 2 0 0
b 0 0 3
c 0 3 0

In game U3, players can coordinate on the strict equilibrium ea, but action a is not
1
2 -dominant (no proper subset of strategies is). For k = 2 and es = ea, it is easy to check
that, under SBR dynamics, αk=2

cb = α
k=2
bc = 2, so strategies b and c are not potentially ea-

stabilizing in {b, c}. Thus, using proposition 3.6 we can state that ea is a repellor under
SBR dynamics with k = 2. These dynamics are illustrated in figure 4 for different tie
breakers.
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(i) min tie breaker (ii) uniform tie breaker (iii) stick-uniform tie breaker

Figure 4: Sampling best response dynamics with sample size k = 2, for the game with payoffmatrix U3,
using different tie breakers.

Note that the analysis of this game does not change if we add some fixed amount m
to every payoff in the same column of U3. In fact, by doing so, we can turn any unstable
strict equilibrium (such as ea, for k = 2) into the Pareto efficient solution of a game, but
this change in efficiency does not change the stability properties of the equilibria under
SBR.

3.6 λ-sampling best response dynamics with statistical inference

Instead of considering a fixed sample size k, and following the equivalent generaliza-
tion in Oyama et al. (2015), we can consider λ-sampling best response dynamics with
statistical inference, under which the size of an agent’s sample is a random draw from
a discrete probability distribution λ on the natural numbers. In this case, let λk be the
probability that a revising agent takes a sample of size k when sampling strategies from
the population state, or, equivalently, the fraction of agents that take samples of size k
when revising their strategy (this fraction is assumed to be independent of the agent’s
strategy).

The dynamics in this case are given by

ẋi = IG,λ,β
i (x) − xi =

∑
k∈N

λk IG,k,β
i (x) − xi,

and it follows easily from our previous results that

DIG,λ,β
i j (es) ≡

∂IG,λ,β
i

∂x j
(es) =

∑
k∈N

λk k βsi

(
πG(zs, j)

)
=

∑
k∈N

λk α
k
i j.

We can consequently define

αλi j =
∑
k∈N

λk α
k
i j, αλi· (J) =

∑
j:a j∈J

αλi j and αλ
·i (J) =

∑
j:a j∈J

αλji
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and the adaptations of definition 1, proposition 3.2 and proposition 3.6 are immediate.
Note that, if for a given rest point es, inference method G and sample size k = k0

the payoff vectors πG(zs, j) are k0-generic, meaning that (for every strategy a j , as) the
vector πG(zs, j) has a unique strategy that obtains the maximum payoff, then αk0

i j ∈ {0, k0}.
Consequently, if the payoffs are k0-generic and proposition 3.6 shows instability for
k = k0, then the adaptation of proposition 3.6 for λ-sampling implies instability for any
distribution λ satisfying k0 λk0 > 1, i.e., if λk0 >

1
k0

.
For instance, if es satisfies the instability conditions in proposition 3.6 for k = 2, then

(assuming genericity for k = 2) es is unstable under any distribution λ satisfying λ2 > 1
2 .

Similarly, if it follows from proposition 3.6 that es is repelling for k = 2 and for k = 3,
then (assuming generic payoffs πG(zs, j) for those sample sizes) es is repelling under any
distribution λ satisfying 2λ2 + 3λ3 > 1.

3.7 Dynamics with unbiased inference method and sample size k = 1

Let us consider here sampling best response dynamics with an unbiased inference
method and sample size k = 1. These dynamics are the same for every unbiased
inference method, so they are SBR1,β dynamics:

ẋi =

n∑
j=1

x j

n∑
h=1

xhβhi(π(e j)) − xi (4)

Observation 3.8. Every strict Nash state is Lyapunov stable under SBR1,β dynamics.

This observation comes from noting that, if es is a strict Nash state, then βhs(π(es)) = 1
and SBR1,β dynamics in (4) guarantee ẋs ≥ 0, so every strict Nash state is Lyapunov
stable under SBR1,β dynamics. Note, however, that strict Nash states may or may not
be asymptotically stable under SBR1,β. Example 1.1 showed a game where no strict Nash
state is asymptotically stable under SBR1,β. On the other hand, if there is a strictly
dominant strategy, its associated strict Nash state is globally asymptotically stable under
every SBRk,β dynamic (see e.g. example 3.1).

In order to characterize which strict Nash equilibria are asymptotically stable under
SBR1,β dynamics, let us consider the pure best response correspondence, which assigns to
each strategy ai the set of pure best responses to ei (i.e., the set of strategies that are best
response to the population state in which every player uses strategy ai).

Proposition 3.9. A necessary condition for a strict Nash state es to be asymptotically stable
under SBR1,β dynamics is that {as} is the only minimal set of pure strategies closed under the
pure best response correspondence.

The proof of proposition 3.9 is based on the fact that, under SBR1,β dynamics, if as is
a strict Nash strategy and the set of strategies J is closed under the pure best response
correspondence, with as < J, then the set of states whose support is in {as} ∪ J is forward
invariant, and at any of those states we have ẋs = 0, precluding convergence to es from
some points in any relative neighborhood of es.
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Considering that every strict Nash strategy is a minimal set of strategies closed un-
der the pure best response correspondence, we have the following corollary of propo-
sition 3.9.

Corollary 3.10. A necessary condition for a strict Nash equilibrium es to be asymptotically
stable under SBR1,β dynamics is to be unique, i.e., that there is no other strict Nash equilibrium
in the game.

If every monomorphic state has a unique best response, then {as} being the only
minimal set of pure strategies closed under the pure best response correspondence is
equivalent to as being the only strategy that survives iterated elimination of strategies
that are not best response to any other strategy (in the surviving set). One could then
expect the asymptotic disappearance of all such iteratively eliminated strategies under
SBR1,β dynamics, as our next proposition shows. In this case, being the only minimal set
of pure strategies closed under the pure best response correspondence implies global
asymptotic stability. This result can also be extended to cases with non unique best
response to monomorphic states, if the tie-breaking rule places positive probability on
every best response.

Proposition 3.11. Assuming that each monomorphic state has a single best response, state es
is globally asymptotically stable under SBR1,β dynamics if and only if {as} is the only minimal
set of pure strategies closed under the pure best correspondence.

If monomorphic states present several best-responses (i.e., if there are ties), the result
of proposition 3.11 still holds for tie-breaking rules that place positive probability on
every best response14.

Example 3.3. Consider the following (symmetric two-player) game, which can be seen
as a stylized model of Bertrand competition (Osborne & Rubinstein, 1998). Strategy L
corresponds to a low price, M to a medium price, and H to a high price. The payoff
matrix is:

U4 =

L M H
L 5 10 10
M 0 7 14
H 0 0 9

Figure 5 shows the graph for the pure best response correspondence in this game.

H M L

Figure 5: Pure best response correspondence graph for the game with payoffmatrix U4.

14For as satisfying the condition, it can be shown, using Lemma 1 of Appendix B in Sandholm et al.
(2020), that, starting at any initial (t = 0) state such that xs(t = 0) < 1, the result

∫ T

0
ẋs(t)dt > 0 holds for

every T > 0, leading to global convergence to es.
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The best response to pure strategies is unique (i.e., the maximum value in each
column of U4 is achieved only once) and the only minimal set of pure strategies closed
under the pure best response correspondence is {L}. Consequently, eL is a global attractor
under SBR1,β dynamics (see figure 6(i)). For k > 1, if the inference method is maximum
likelihood (for whichπG(z) = π( z

k )), the results in Oyama et al. (2015) can be used to show
that eL is an almost global attractor, because L is an iterated 1

k -dominant equilibrium
(see figures 6(ii) and 6(iii)).

(i) k = 1, any tie breaker (ii) k = 2, any tie breaker (iii) k = 10, any tie breaker

Figure 6: Sampling best response dynamics for the game with payoffmatrix U4, for various sample sizes k.

4 A ranking for strict Nash equilibria

We can assign a natural number rank(es) to each strict Nash state es in a game according
to the smallest sample size k0 such that the state is asymptotically stable under SBRk,β

dynamics for every k ≥ k0 and for every β (i.e., regardless of the tie-breaking rule).
Proposition 3.3 shows that the rank of a strict Nash state is always a finite number. For
two-player games, corollary 3.5 provides an upper bound on the rank of each strict
Nash state.

For an intuitive informal interpretation of the rank of an equilibrium, note that we
can consider SBRk,β dynamics as smoothed best response dynamics. The approximation
is better the higher the value of the sample size k (see figure 7). Mathematically, we can
think of SBRk,β dynamics as polynomial approximations to best response dynamics, of
degree (at most) k + 1.15

Under best response dynamics (BR), every strict Nash state is asymptotically sta-
ble and has some basin of attraction. This is also the case under SBR dynamics for
sufficiently large values of k. However, as k decreases, the SBR dynamics become
increasingly dissimilar from BR (in the sense of corresponding to polynomial approx-
imations of lower degree; see figure 7), and some equilibria may (and typically will)

15For 2-player 2-strategy games played in one population, SBRk,β dynamics are the Berstein polynomial
approximation to best response dynamics.
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Figure 7: Inflow for strategy 2 as a function of the proportion of 2-strategists, in the pure coordination
game [(1, 0), (0, 2)], for best response dynamics (BR) and for sampling best response dynamics SBRk,β for

different values of the sample size k and any tie breaker β. Note that the outflow for strategy 2 in this
graph corresponds to the segment that connects points (0, 0) and (1, 1). This observation allows the reader

to easily infer the stability and the size of the basin of attraction of each of the two strict Nash states for
the different dynamics.

become unstable16 and lose their basins of attraction (see figure 8).
The rank of an equilibrium is a measure of how robust the local stability of that

strict equilibrium is to the noise, limited information or smoothing that is implicit in
a SBR decision protocol with small sample size. Lower rank numbers indicate greater
robustness to the perturbations on the exact best response dynamics created by the SBR
process.

Observation 4.1 (Rank of strict Nash states in two-player two-strategy games). In the
special case of two-player two-strategy games, it follows from our previous results that:

• The rank of a strict Nash state es is the smallest integer k such that as is (1− 1
k )-dominant.

• The rank of a strict Nash state es is 1 if and only if it corresponds to a strictly dominant
strategy.

• In coordination games with two (symmetric) strict Nash equilibria, an equilibrium is risk-
dominant if and only if its rank is 2, while the rank of a non-risk-dominant equilibrium
is greater than 2. To be precise, assuming without loss of generality that e1 is non-risk-
dominant, its rank is ⌊ U11−U21+U22−U12

min(U11−U21,U22−U12)⌋ + 1.

16An equilibrium may be stable for some k = k0 but unstable for some k′ > k0. For instance, for the game
with payoffmatrix (rows) [(3, 1, 0), (0, 0, 5), (2, 0, 2)], e1 is stable for k = 2 and unstable for k = 3.
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Figure 8: Size of the basin of attraction of strict Nash state e1 in the pure coordination game [(1, 0), (0, 2)],
for sampling best response dynamics SBRk,β=uniform, for different values of the sample size k.

Example 4.1. Consider the following pure coordination game, with strategy set {1, 2}
and payoffmatrix [

1 0
0 2

]
Applying the result for two-player two-strategy coordination games presented in ob-
servation 4.1, we can easily state that the rank of e1 is ⌊ 1+2

min(1,2)⌋ + 1 = 4 and the rank of
e2 is 2, since it is risk-dominant. Figures 7 and 8 provide several insights for this game.

Example 4.2. Consider the following game, with strategy set {1, 2} and payoffmatrix:[
10 8
0 U22

]
Applying the results in observation 4.1, we can state:

• If U22 < 8, a1 is strictly dominant (0-dominant) and the rank of the unique strict
Nash equilibrium e1 is consequently 1.

• If 8 < U22 < 18, there are two strict Nash equilibria and a1 is risk-dominant ( 1
2 -

dominant), so the rank of e1 is 2 (this is also its rank for U22 = 8), while the rank of
e2 is ⌊U22+2

U22−8⌋ + 1 ≥ 3.

• If U22 > 18, there are two strict Nash equilibria: a2 is risk-dominant ( 1
2 -dominant),

so the rank of e2 is 2, while the rank of e1 is ⌊U22+2
10 ⌋ + 1 ≥ 3.

Example 4.3. Consider the following game, with strategy set {a, b, c} and payoffmatrix:
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U5 =

a b c
a 1 1 1
b 0 2 2
c 0 0 4

It follows from propositions 3.2 and 3.6 that:

• ea is asymptotically stable for k ≥ 5, and unstable for k = 2, 3 (see figures 9 and 10).
Its stability for k = 4 depends on the tie-breaking rule (see figure 11), so its rank is
5.

• eb and ec are asymptotically stable for k ≥ 3 (see figures 10 and 11). Their stability
for k = 2 depends on the tie-breaking rule (see figure 9), so their rank is 3.

Note that in this example, no proper subset of strategies is 1
2 -dominant, so the results

in Oyama et al. (2015) do not apply.

(i) min tie breaker (ii) uniform tie breaker (iii) stick-uniform tie breaker

Figure 9: Sampling best response dynamics with sample size k = 2, for the game with payoffmatrix U5,
using different tie breakers.

(i) k = 3 (ii) k = 5 (iii) k = 10

Figure 10: Sampling best response dynamics for the game with payoffmatrix U5, for uniform tie breaker
and various sample sizes k.
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(i) min tie breaker (ii) uniform tie breaker (iii) stick-uniform tie breaker

Figure 11: Sampling best response dynamics with sample size k = 4, for the game with payoffmatrix U5,
using different tie breakers.

5 Application to tacit coordination games

Tacit coordination games, also known as minimum-effort, weak-link or weakest-link games
(Camerer, 2003; Engelmann & Normann, 2010; Feri, Gantner, Moffatt, & Erharter, 2022;
Van Huyck, Battalio, & Beil, 1990), constitute a paradigmatic case of how individuals can
show a tendency to coordinate on some strict Nash equilibria rather than others. In these
games, all symmetric strict Nash equilibria satisfy most equilibrium refinements and
correspond to evolutionarily stable states.17 However, experimental evidence clearly
shows that human subjects do discriminate between different strict equilibria in these
games, and their behavior clearly depends on the number of players.

In a tacit coordination game, a group of individuals must decide how much effort to
put into a common project. Each unit of effort has an individual cost b, and the output of
the project depends solely on the minimum of the individual efforts, i.e. m; specifically,
each player gets the minimum individual effort m times the unitary benefit a, with a > b.
The greater the minimum effort, the greater the profit players will obtain. However, if
any individual works less than the rest, the extra effort put by the others goes to waste.

Formally, tacit coordination games are symmetric p-player games with strategy set
A = {1, ...,n} (denoting the player’s effort or contribution) and payoff function

U(i; j1, . . . , jp−1) = a min(i, j1, . . . , jp−1) − b i,

where a > b ≥ 0 are the two parameters controlling the benefit and the cost of effort
units, respectively.18

Table 1 represents the payoff function for the p-player 3-strategy case (n = 3). The
row headings on the payoff matrices in table 1 indicate the strategy chosen by the

17All symmetric strict Nash equilibria are evolutionarily stable according to the standard definition of
evolutionary stability (Weibull, 1995). Crawford (1991) provides a detailed analysis of these games and
shows that the only equilibrium state that satisfies a finite-population definition of evolutionary stability
is the secure state e1.

18Often, in experiments, a constant value c is added to every payoff to establish (material or monetary)
rewards, so that they fall within a desired range.
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player that receives the payoff. The column headings indicate the minimum value of
the strategies chosen by the other (p − 1) players.

Table 1: Payoffmatrices for a p-player tacit coordination game with three strategies (n = 3). Left: general
case. Right: a = 2 and b = 1.

min of others’ strategies

1 2 3
1 a − b a − b a − b
2 a − 2b 2a − 2b 2a − 2b
3 a − 3b 2a − 3b 3a − 3b

min of others’ st.

1 2 3
1 1 1 1
2 0 2 2
3 −1 1 3

Here we focus on the case b > 0. Note that every homogeneous pure strategy
profile (i, i, ..., i), in which all the p players choose the same effort level i, is a strict Nash
equilibrium, and these equilibria are strictly Pareto ranked, with their rank preference
growing with the effort level i. However, given any strategy profile, selecting the lowest
strategy chosen by the other players is the unique best reply. This means that, at any
equilibrium (i, ..., i), if any player deviates to a lower strategy j < i, then following suit
and changing to strategy j is the unique best response for the other players. This creates
a tension that can induce players to lower their strategy or “effort” as soon as any other
player does, or as soon as players believe that any other player may do it. The only Pareto
efficient state is en, while the minimax or secure profile is e1 (the minimum effort is the
strategy that guarantees the greatest worst-case payoff).

Experimental evidence on these games shows that people’s behavior depends on
the number of players in the game and on the benefit/cost ratio a

b . When the game is
played in very small groups,19 experimental results show a clear tendency to choose
the efficient highest-effort strategy (Engelmann & Normann, 2010; Van Huyck et al.,
1990).20 In contrast, in groups with several players, the distribution of strategies is
initially diverse, and then the vast majority of players approach the lowest effort fairly
quickly.21 This clear pattern of discrimination between strict Nash equilibria, dependent
on the number of players and against efficiency in the case of large groups, is difficult
to explain along the lines of traditional game theory (Crawford, 1991).

An underlying intuition for this effect of the number of players is that, even if a
player were to expect every other player to choose the efficient-equilibrium strategy n
with high probability, the larger the number of players, the more likely some player will
deviate from the efficient-equilibrium strategy n, and this can make the efficient strategy
unattractive. The effect of this uncertainty about which of the possible equilibria other
players expect, and consequently about what strategy they will choose, is known as
strategic uncertainty (Andersson, Argenton, & Weibull, 2014; Van Huyck et al., 1990).

19With a
b = 2, “small groups” means p = 2 players, and sometimes also 3- and 4-player groups.

20In most cases, the experiment is repeated with the same group of co-players. Van Huyck et al. (1990)
also present results on setups where players were randomly paired after every period. In that case, they
did not find any stable pattern of behavior.

21With a
b = 2, this is almost always the case for groups with more than 4 players.

25



Besides increasing with the number of players, the coordination failure has been
shown to decrease with the benefit/cost ratio a

b (Brandts & Cooper, 2006; Feri et al., 2022;
Goeree & Holt, 2005), so for low benefit/cost ratios the tendency to low effort can be
found already for p = 2, while for larger ratios the tendency to high effort persists for
greater numbers of players.

Under sampling best response SBRk,β dynamics with k > 1, we find (see proofs in
the appendix) the following results for the stability of each strict Nash equilibrium.22

We focus on the effect of the number of players p ≥ 2, considering the sample size k and
the benefit/cost ratio a

b as parameters (see figure 12).

★

2 3 4 5 6

2

4

6

8

10

Sample size

N
u
m
b
er
of
p
la
y
er
s

e1

All

(i) benefit/cost ratio a/b = 2

★

2 3 4 5 6

2

4

6

8

10

Sample size

N
u
m
b
er
of
p
la
y
er
s

en

e1

All

(ii) benefit/cost ratio a/b = 5
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(iii) benefit/cost ratio a/b = 10

Figure 12: Stability of strict Nash states under SBRk,β dynamics in tacit coordination games, for different
values of sample size k and number of players p, and for different values of the benefit/cost ratio a/b. A

black circle located at (k, p) indicates that the only asymptotically stable state for that combination of k and
p is e1. Gray circles indicate that all strict Nash states are asymptotically stable, and white circles indicate
combinations of k and p for which the only asymptotically stable state is en. At any circle, the strict Nash

states that are not asymptotically stable are unstable. Stars indicate borderline cases which depend on the
tie breaker.

• If the number of players p is large enough, specifically, if p > 1 + log(a/b)
log(k/(k−1)) , then

the lowest-effort state e1 is almost globally asymptotically stable, because it is an
iterated 1/k-dominant equilibrium (Oyama et al., 2015). This implies that all the
other strict Nash states are unstable.

• If the number of players is p < 1+ logk( a
b ), then the highest-effort state en is almost

globally asymptotically stable, because it is an iterated 1/k-dominant equilibrium.

Note that, if k < a
b , this condition is satisfied at least for p = 2; while if k > a

b ,
the condition cannot hold, for any p ≥ 2. As we increase the benefit/cost ratio a

b ,
the number of players for which en is almost globally asymptotically stable may
increase.

• If the number of players is in the range
(
1 + logk( a

b ), 1 + log(a/b)
log(k/(k−1))

)
, then every strict

Nash state is asymptotically stable.

22For k = 1, we have ẋ = 0 at every state.
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a
b = 2 p = 6 a

b = 5 p = 6 a
b = 10 p = 6

a
b = 2 p = 3 a

b = 5 p = 3 a
b = 10 p = 3

a
b = 2 p = 2 a

b = 5 p = 2 a
b = 10 p = 2

Figure 13: Sampling best response dynamics SBRk=3,β dynamics in tacit coordination games, for different
values of the benefit/cost ratio a

b and number of players p. The figures are valid for any tie breaker.
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In order to observe how an increment in the number of players p favors the stability
of the lowest-effort state e1 and the instability of the highest-effort state en under SBRk,β

dynamics, we can consider a small sample size such as k = 3 and a benefit/cost ratio
a
b > 3 (see figures 12(ii), 12(iii)). In this case:

• For two players (p = 2), the Pareto efficient highest-effort state en is almost globally
asymptotically stable (while all the other strict Nash states are unstable). This can
also hold for more players, specifically, it holds while p < 1 + log3( a

b ).

• For number of players in the range
(
1 + log3( a

b ), 1 +
log3( a

b )
1−log3 2

)
, every strict Nash state

is asymptotically stable.

• For p > 1+
log3( a

b )
1−log3 2 , the lowest-effort state e1 is almost globally asymptotically stable

(while all the other strict Nash states are unstable).

To conclude, the stability analysis of the strict equilibria of tacit coordination games
under SBR dynamics captures two of the more salient experimental findings in these
games (see figure 13): the effect of increasing the number of players (which favors the
lowest-effort state e1) and the effect of increasing the benefit/cost ratio (which favors
the highest-effort state en). This qualitative insight can be quantified in a formal way
using the concept of rank: the rank number of the secure state e1 (i.e. its vulnerability
to sampling noise) is a –weakly– increasing function of the benefit/cost ratio and a
–weakly– decreasing function of the number of players (see figure 14(i)). By contrast,
the rank number of the efficient state en –weakly– increases with the number of players
and –weakly– decreases with the benefit/cost ratio (see figure 14(ii)).

(i) Rank of secure state e1 (ii) Rank of efficient state en

Figure 14: Rank of the secure state e1 and of the efficient state en in tacit coordination games, for different
values of the number of players p and of the benefit/cost ratio a/b. For clarity, we only consider integer

values of the benefit/cost ratio a/b.
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6 Conclusions

In this paper we have derived deterministic approximations (mean dynamics) for sam-
pling best response protocols with statistical inference, characterized the Jacobian of
such dynamics at monomorphic rest points, and developed simple tests for asymp-
totic stability and for instability of such equilibria. The tests can be easily applied to
λ-sampling best response dynamics with statistical inference, under which the size of
an agent’s sample is a random draw from a discrete probability distribution λ on the
natural numbers. Considering the specific case of maximum likelihood estimation,
or sampling best response, the analysis of stability can assign a rank number to each
strict equilibrium in a game, measuring how stable or robust each equilibrium is under
small-size sampling (best response) protocols. This rank also provides a method to
select among the different strict equilibria in a game. In the 2x2 case, this selection
method coincides with the risk dominance criterion. Tacit coordination or weakest-link
games constitute a paradigmatic case study of how players tend to coordinate in some
particular strict equilibria instead of others, and, in these games, the analysis of sta-
bility of each equilibrium under sampling best response dynamics presents the same
qualitative features that are usually observed in experimental studies.

A

A.1 Iterated elimination of strategies

Here we define the set of survivors of iterated elimination of strategies satisfying con-
dition C in a finite set Ω. Let J0

≡ Ω and define Jm recursively by

Jm = {i ∈ Jm−1
| i does not satisfy condition C in Jm−1

}.

The (potentially empty) set J|Ω| is the set of strategies that survive iterated elimination of
strategies satisfying condition C in set Ω. An algorithm for this procedure is described
in algorithm 1.

Algorithm 1 Iterated elimination of strategies satisfying condition C in set Ω

J← Ω
while ∃ j ∈ J | j satisfies condition C in J do

J← J \ { j ∈ J | j satisfies condition C in J}
end while▷ J at the end is the set of all surviving strategies after iterated elimination

A.2 Proofs

Proof of proposition 3.2. This proof is based on a related result for BEP dynamics in
Izquierdo and Izquierdo (2022). Remember that, for i, j , s, DIG,k,β

i j (es) = k βsi(πG(zs, j)) ≡
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αk
i j. Consider in (1) a change of variables for the population state (x1, x2, ..., xn) that sends

the equilibrium es to the origin 0, by eliminating the coordinate xs = 1 −
∑

i,s xi while
keeping the labeling of the other coordinates. In this reduced system W, consider the
Jacobian of dynamics (1) at the equilibrium, DW(0), whose components (for i, j , s) are
DWi j(0) = DIG,k,β

i j (es) − DIG,k,β
is (es) − δi j = αk

i j − δi j, where δi j is the Kronecker delta, and

where it has been considered that, for i , s, DIG,k,β
is (es) = 0 (see section 3.3). Let J ⊆ A\{as}

be a non-empty subset of strategies (not containing strategy as) and let DWJ(0) be the
square submatrix of DW(0) whose rows and columns correspond to the strategies in
J, i.e., the principal submatrix of DW(0) corresponding to J. If a j is es-stabilizing in
J, then the column of DWJ(0) corresponding to strategy a j is made up by zeros in all
non-diagonal positions, with a value −1 at the diagonal position. Let (a j1 , a j2 , ..., a jn−1) be
an ordering of the (n − 1) strategies in A \ {as} that iteratively eliminates es-stabilizing
strategies. Then the column of DW(0) corresponding to strategy a j1 is made up by zeros
in all non-diagonal positions, with a value −1 at the diagonal position. Considering the
cofactor expansion of the determinant of the Jacobian along the column corresponding
to a j1 , and denoting by DW−{ j1}(0) the submatrix of DW(0) obtained by eliminating the
column and row corresponding to a j1 , we have that |DW(0)| = (−1) |DW−{ j1}(0)|. Now,
the column of DW−{ j1}(0) corresponding to strategy a j2 is made up by zeros in all non-
diagonal positions, with a value −1 at the diagonal position. Proceeding sequentially
with the other strategies we obtain |DW(0)| = (−1) |DW−{ j1}(0)| = (−1)2

|DW−{ j1, j2}(0)| =
... = (−1)n−1, i.e., all the eigenvalues of the Jacobian have negative real parts, which
implies asymptotic stability of the equilibrium.

The proof for es-stabilized strategies is the same, swapping rows for columns. □

Proof of proposition 3.3. By continuity of the payoff function π, if as is a strict Nash
strategy then there is a positive ϵ > 0 and a positive δ > 0 such that πs(x) − π j(x) > δ for
x ∈ {x : xs > 1−ϵ} and for every j , s. We will show next that, if the estimation method G
is unbiased, then the probability of the set {x : xs > 1− ϵ} (where πs(x)−π j(x) > δ) under
G, given sample zs, j, tends to 1 as k → ∞, which (given that the payoffs are bounded)
implies that, eventually (i.e., for every k greater than some finite k0), strategy as is the
only strategy to obtain the maximum in the payoff vector πG(x), and, by proposition 3.2
(considering that all strategies in A \ {as} are then es-stabilizing ), es is asymptotically
stable. To see that the probability of the set {x : xs > 1 − ϵ} tends to 1 as k → ∞ note
that, for unbiased G and sample zs, j, the estimate gz assigns probability 0 to (the set of)
states with xi > 0 for i < { j, s} and, for the probability of states with xs + x j = 1, there is a
generalized probability density function fzs, j : [0, 1]→ [0, 1] such that

1
k
= x̄G

j (zs, j) =
∫ 1

0
x j fzs, j(x j) dx j =

∫ ϵ

0
x j fzs, j(x j) dx j +

+

∫ 1

ϵ+
x j fzs, j(x j) dx j ≥ ϵ

∫ 1

ϵ+
fzs, j(x j) dx j
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where
∫ 1
ϵ+

fzs, j(x j) dx j is the probability (under G, given sample zs, j) of the states with
xs ≤ 1− ϵ. This probability is consequently bounded above by 1

k ϵ (for a fixed ϵ > 0), and
therefore tends to 0 as k → ∞, so the probability of the complement set {x : xs > 1 − ϵ}
tends to one. If the estimation method is maximum likelihood (SBR protocol), we find
asymptotic stability of es for k > 1

ϵ . □

Proof of proposition 3.4. At any state zs, j

k the fraction of players using strategy as is k−1
k =

1 − 1
k . For k ≥ k0, this fraction is greater or equal than 1 − 1

k0
. Consequently, if es is

(1− 1
k0

)-dominant, then as is the only best response at any state zs, j

k with k ≥ k0, so αk
i j = 0

for every other strategy ai , as, i.e., all the other strategies are es-stabilizing in A\{as}. □

Proof of corollary 3.5. In two-player games, with payoffs Ui j, we have πi( zs, j

k ) = k−1
k Uis +

1
k Ui j. Consequently, k(πs( zs, j

k ) − πi( zs, j

k )) = (k − 1)(Uss − Uis) + Usj − Ui j. It follows that,

if k − 1 >
Ui j−Usj

Uss−Uis
, then πs( zs, j

k ) > πi( zs, j

k ), i.e., as is a better response to zs, j

k than ai. The
bound for k stated in the corollary guarantees that this condition holds for every i , s
and every j , s. □

Proof of proposition 3.6. As in the proof of proposition 3.2, consider the Jacobian of the
(reduced) dynamics (1) at the equilibrium, DW(0), whose components are αk

i j − δi j, with
i, j , s.

1. Repulsion.

Let us first prove the repelling result, based on Sethi (2000) and Sandholm et al.
(2020). From (3), the linearization of the reduced dynamics (where xs has been
eliminated) around the equilibrium state 0 is ẋi =

∑
j,s α

k
i jx j − xi. Consequently,

∑
i,s

ẋi =
∑
i,s

∑
j,s

αk
i jx j −

∑
i,s

xi =
∑
j,s

∑
i,s

αk
i j

 x j −
∑
i,s

xi (5)

Let α ≡ min j
∑

i,s α
k
i j. If no strategy is potentially es-stabilizing in S \ {as}, then∑

i,s α
k
i j > 1 for every j , s, so α > 1. From (5) we have that the linearized system

satisfies ∑
i,s

ẋi ≥
∑
j,s

αx j −
∑
i,s

xi = (α − 1)
∑
i,s

xi

This implies that we can find a positive value ϵ0 and a positive value α1 < α − 1
such that, in the partial neighborhood of 0 where

∑
i,s xi < ϵ0, the non-linearized

dynamics satisfy ∑
i,s

ẋi ≥ α1

∑
i,s

xi
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Consequently, every trajectory starting in the considered partial neighbourhood
where

∑
i,s xi < ϵ0, at a point that is not 0, will eventually leave the neighborhood

(with
∑

i,s xi(t) growing at exponential rate), proving that 0 is a repellor in the
reduced dynamics and, equivalently, that es is a repellor in the original dynamics
(1).

2. Instability.

This proof is based on Sandholm et al. (2020) (proof of prop. 5.4). If the iterated
elimination of potentially es-stabilizing strategies does not eliminate all strategies
in S \ {as}, then there is some non-empty subset of strategies J ⊆ S \ {as}which does
not contain any potentially es-stabilizing strategies. This implies that if ai ∈ J then
αk
·i(J) > 1.

Let DW+(0) ≡ DW(0) + In−1 be the non-negative matrix obtained by adding the
identity matrix to DW(0), and whose components are consequently αk

i j ≥ 0, and let
DW+

J (0) be the principal submatrix of DW+(0) corresponding to the strategies in J.
The addition of the values in each column of DW+

J (0) is then αk
·i(J) > 1. As DW+(0)

is a non-negative real matrix, its Perron-Frobenius eigenvalue ρ is bounded below
by the minimum column sum in (any one of) its principal submatrices (Horn
& Johnson, 1985, corollary 8.1.20 and theorem 8.1.22), and, consequently, ρ ≥
mini:ai∈J αk

·i(J) > 1. Note that if λ is an eigenvalue of DW+(0) then λ′ = λ − 1 is an
eigenvalue of DW(0). Consequently, DW(0) has a positive eigenvalue (ρ − 1) > 0
corresponding to a nonnegative eigenvector, proving that es is unstable under SBR
dynamics.

The proof for es-stabilized strategies is equivalent and rests on the fact that the
Perron eigenvalue ρ of DW+(0) is also bounded below by the minimum row sum
in (any one of) its principal submatrices (Horn & Johnson, 1985).

□

Proof of proposition 3.9. Suppose, by contradiction, that there is some non-empty subset
of strategies J ⊆ A \ {as} such that J is closed under the (pure) best response correspon-
dence BR, with BR(ai) ≡ {a j ∈ A : π j(ei) = maxh∈{1,...,n} πh(ei)}. Then, considering (2),
we have that the face ∆J∪{as} ≡ {x ∈ ∆A :

∑
i:ai∈J∪{as}

xi = 1} is invariant and, along every
trajectory starting at a point in that face, ẋs = 0 (so xs(t) is constant). Consequently, for
every (partial) neighborhood O of es there are trajectories starting at states in O (at least
those in the intersection of O \ es with the face ∆J∪{as}) that do not converge to es, so es is
not asymptotically stable. Note, however, that this does not rule out that all trajectories
starting at the relative interior of ∆A converge to es, even if es is not asymptotically
stable. □

Proof of proposition 3.11. It follows from proposition 3.9 that the condition is necessary
for asymptotic stability of es, and, consequently, it is necessary for global asymptotic
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stability. Let us show that it is sufficient for global asymptotic stability. Under the
conditions in proposition 3.11, dynamics (4) simplify to

ẋi =

n∑
j=1

x jβi(π(e j)) − xi

or, in matrix form, letting B be a matrix with components Bi j ≡ βi(π(e j)),

ẋ = (B − I)x (6)

which is a constant coefficient homogeneous linear differential system with solution
x = et(B−I)x0. If we eliminate the component corresponding to the strict Nash state es
(considering that, for i , s, βi(π(es)) = 0), then, using the subscript −s to indicate that
component xs has been eliminated, we get to the following reduced system:

ẋ−s = (B−s − I) x−s (7)

Note that B−s is a non-negative matrix, and the addition of the values in each of its
columns (i.e.

∑
i,sBi j =

∑
i,s βi(π(e j)) for column j) is bounded above by 1, which implies

that its Perron-Frobenius eigenvalue is also bounded above by 1 (Horn & Johnson, 1985,
theorem 8.1.22). In fact, its Perron-Frobenius eigenvalue must be less than 1, because
otherwise there would be (besides as) another minimal set of strategies closed under
the best response correspondence. This implies that all the eigenvalues of (B−s − I),
which are obtained by substracting 1 from the eigenvalues of B−s, have negative real
part, and, consequently, that the linear flow et(B−s−I) corresponding to (7) is a contraction
(Hirsch & Smale, 1974), so every trajectory tends to the origin as t→∞, proving global
convergence of (6) to es. □

Proof of the results for tacit coordination games. We will show that, for k > 1:

1. If a
b < ( k

k−1 )p−1 then the lowest-effort state e1 is an iterated 1/k-dominant equilib-
rium, which implies that it is almost globally asymptotically stable (Oyama et al.,
2015).

2. If a
b > kp−1 then en is an iterated 1/k-dominant equilibrium, so it is almost globally

asymptotically stable.

3. If ( k
k−1 )p−1 < a

b < kp−1 then every strict Nash state is asymptotically stable.

Proof of result 1.
When a player is matched with (p − 1) co-players at state x, the probability that the

minimum of their contributions is n (i.e, the maximum possible contribution) is xp−1
n .

The probability that that minimum is less than n is (1 − xp−1
n ). By considering the two

last rows of the payoff table for a tacit coordination game (see table 1), we have

πn(x) − πn−1(x) = (a − b)xp−1
n − b(1 − xp−1

n ) = axp−1
n − b
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Consequently, if xp−1
n < b

a then n is not a best response to state x. It follows that if
xn ≤ (1 − 1

k ) and (1 − 1
k )p−1 < b

a , then strategy n is not a best response. In other words, if
(1 − 1

k )p−1 < b
a , then {1, 2, ...,n − 1} is a 1/k-best response set (Oyama et al., 2015). Now,

if we eliminate strategy n and consider the restriction of the game to the strategy set
{1, 2, ...,n−1}, we can apply the same argument to the strategy with the maximum contri-
bution in the set (i.e., strategy n−1), and repeat the process until only strategy 1 remains,
showing that e1 is an iterated 1/k-dominant equilibrium. Condition (1 − 1

k )p−1 < b
a can

alternatively be written as a
b < ( k

k−1 )p−1, or as p > 1 + log(a/b)
log(k/(k−1)) .

Proof of result 2.
When a player is matched with (p − 1) co-players at state x, the probability that the

minimum of their contributions is greater than 1 (i.e, greater than the minimum possible
contribution) is (1−x1)p−1. The probability that that minimum equals one is 1−(1−x1)p−1.
By considering the two first rows of the payoff table for a tacit coordination game (see
table 1), we have

π2(x) − π1(x) = (a − b) (1 − x1)p−1
− b [1 − (1 − x1)p−1] = a (1 − x1)p−1

− b

Consequently, if (1 − x1)p−1 > b
a then contributing 1 is not a best response to state x. It

follows that if x1 ≤ (1 − 1
k ) and ( 1

k )p−1 > b
a , then strategy 1 is not a best response. In

other words, if a
b > kp−1, then {2, ...,n−1} is a 1/k-best response set. Now, if we eliminate

strategy 1 and consider the restriction of the game to the strategy set {2, ...,n}, we can
apply the same argument to the strategy with the minimum contribution in the set (i.e.,
strategy 2), and repeat the process until only strategy n remains, showing that en is an
iterated 1/k-dominant equilibrium. Condition a

b > kp−1 can alternatively be written as
p < 1 + logk( a

b ).

Proof of result 3.
Let us calculate πi( zs, j

k ). At state zs, j

k : the fraction of a j-players in the population is
1
k , and the fraction of as-players is k−1

k ; then, the probability that all (randomly met)
(p − 1) co-players use strategy a j is 1

kp−1 , and the probability that they all use strategy as

is ( k−1
k )p−1; the expected payoff to strategy ai is then

πi

(
zs, j

k

)
=a

min(i, s)
(

k − 1
k

)p−1

+min(i, j)
1

kp−1


+ a min(i, j, s)

1 −
1

kp−1
−

(
k − 1

k

)p−1 − bi

For j ∈ {1, ...,n} and i ∈ {1, ...,n − 1}, the difference πi+1( zs, j

k ) − πi( zs, j

k ) is:
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(a − b) > 0, if i < min( j, s). (8)
− b < 0, if i ≥ max( j, s). (9)(
k − 1

k

)p−1

a − b, if j ≤ i < s. (10)

1
kp−1

a − b, if s ≤ i < j. (11)

If
(

k
k−1

)p−1
< a

b < kp−1, which requires k > 2:

• The differences (8) and (10) are positive, and the differences (9) and (11) are
negative.

• For any s and j we have that πi

(
zs, j

k

)
increases with i for i < s and decreases with

i for i > s, which implies that αk
i j = 0 for every i , s and, by proposition 3.2, es is

asymptotically stable.

□
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