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Abstract

Games with endogenous separation are repeated games in which the set of choices
that a player can make after every stage game includes the option to leave the cur-
rent partnership and keep on playing in a newly-formed partnership. In the setting
of population games, we present a general framework to analyze equilibria in games
with endogenous separation, focusing on neutral stability in the unrestricted strat-
egy space. We introduce path-protecting strategies and provide a constructive proof
of existence. JEL classification numbers: C72, C73.
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1 Introduction

Games with endogenous separation1 are repeated games (Mailath and Samuelson, 2006)
in which the set of choices that a player can make after every stage game includes the op-
tion to leave the current partnership and keep on playing in a newly-formed partnership.
Partnerships may be broken because some players decide to break them (endogenous
separation) or for reasons that do not depend on the players’ choices (exogenous sepa-
ration). In most models, one single player’s decision to leave is sufficient to break the
partnership, but other alternatives have also been considered.2 We assume that there is
no information flow between partnerships (Ghosh and Ray, 1996), so there are no repu-
tation effects: single players (those who make up new partnerships) are anonymous.3

*Correspondence to: EII, Universidad de Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain.
e-mail : segismundo.izquierdo@uva.es.
Abbreviations.

1Games with endogenous separation are also known as voluntarily separable repeated games (Fujiwara-
Greve and Okuno-Fujiwara, 2009; Fujiwara-Greve et al., 2012, 2015), voluntary partnership games (Vesely
and Yang, 2010), games with conditional dissociation (Izquierdo et al., 2010, 2014), voluntary continu-
ation games (Vesely and Yang, 2013) or games with endogenous match separation (Deb et al., 2020).
Newton (2018) provides a nice short summary, in the context of assortativity (Nax and Rigos, 2016).

2See e.g. Kurokawa (2022) or Křivan and Cressman (2020).
3Fujiwara-Greve et al. (2012) consider a model where players may voluntarily provide information

across partnerships in the context of the Prisoner’s Dilemma.
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To our knowledge, there is still no standard framework for the analysis of games with
endogenous separation in the unrestricted strategy space, not even for the two-player
case. Some proposed approaches that we draw on can be found in Carmichael and
MacLeod (1997) and Fujiwara-Greve and Okuno-Fujiwara (2009), which focus on the
Prisoner’s Dilemma, as well as in Vesely and Yang (2010) and Izquierdo et al. (2021).4

Here we present a framework that extends the setting of evolutionary population games
(Sandholm, 2010) to symmetric two-player games with endogenous separation.

Within this framework, we discuss different equilibrium concepts. While some equi-
librium concepts, such as Nash equilibrium, can be easily extended to games with en-
dogenous separation, the extension of stronger equilibrium concepts such as neutral
stability is not so straightforward. One difficulty is associated with finding a convenient
characterization of the payoff function for a group of potential invaders in a population.
Then, there are different standard definitions of neutral stability (Bomze and Weibull,
1995). Most of those definitions are equivalent in the standard model of two-player
games, where payoff functions are linear, but they are not equivalent (and some of them
do not guarantee desirable dynamic stability properties) when payoff functions are not
linear (Bomze and Weibull, 1995), which is the case in games with endogenous separa-
tion. It remained a challenge (see appendix A) to find a definition of neutral stability for
games with endogenous separation that is i) simple and consistent with some standard
definition of neutral stability, and ii) guarantees desirable dynamic stability properties,
such as Lyapunov stability in the replicator dynamics.

Here, after a convenient definition and characterization of payoff functions, we pro-
pose a definition of neutral stability that is a direct adaptation for population games
of the original concept (Maynard Smith, 1982; Banerjee and Weibull, 2000), and which
allows us to bring known dynamic implications of such equilibria to our framework.

We pay special attention to monomorphic equilibrium states, or conventions, at
which every player uses the same strategy. Our analysis of neutral stability shows a
fundamental limitation of strategies with finite break-up period, i.e., strategies that,
when playing against themselves, decide to break up the partnership at some point:
such strategies cannot be neutrally stable in most games. We analyze a special type
of strategies that we call path-protecting. A path-protecting strategy never leaves a
partner who mimics its behavior and, if adopted by all the players in a population,
guarantees that any player who deviates from the equilibrium path obtains a strictly
lower payoff than the population’s average. The concept of path-protecting strategy
generalizes the idea of trust-building strategies that appear in previous works focused
on the Prisoner’s Dilemma or games with a similar structure (Datta, 1996; Ghosh and
Ray, 1996; Carmichael and MacLeod, 1997; Kranton, 1996; Fujiwara-Greve and Okuno-
Fujiwara, 2009). Path-protecting strategies will be shown to be neutrally stable, and
Lyapunov stable in the replicator dynamics.

The analysis of existence of path-protecting strategies will lead to a folk theorem

4Several studies focus on specific sets of strategies, such as Aktipis (2004, 2011) and Premo and Brown
(2019) in a spatial setting, Izquierdo et al. (2010, 2014), Zheng et al. (2017) and Li and Lessard (2021).
For experimental studies see Zhang et al. (2016) and the references therein.
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for neutral stability, which shows that in a game with endogenous separation, for large
enough values of the continuation probability, any payoff between the pure minmax
payoff and the maximum symmetric payoff of the stage game can be obtained as the
equilibrium payoff of some neutrally stable strategy.

Path-protecting strategies present some parallelisms and some differences with the
classical trigger strategies that, in standard repeated games, prevent deviations from an
equilibrium path by playing a minmax action after a deviation. In standard repeated
games, trigger strategies protect a path by the threat of punishment, but such potential
punishment does not materialize in the equilibrium path. In games with endogenous
separation, a player who deviates can avoid punishment from a partner by breaking up
the partnership, so a convention in a population needs to ensure that players who deviate
and go (or are sent) to find a new partner undergo a journey through the wilderness or
deviation-deterring phase after starting a new partnership. Because of the anonymity
assumption, every player when starting a partnership needs to go through the deviation-
deterring phase, which has to be part of the equilibrium path.

The concept of path-protecting strategy will also be extended to polymorphic path-
protecting equilibrium states.

The paper is structured as follows. In section 2 we define games with endogenous
separation derived from normal-form stage games, and we discuss their main elements:
strategies, population states, pool states and payoff functions. In section 3 we provide
definitions for Nash states and for neutrally stable states in these games. Previous
definitions of neutral stability for this framework, such as those by Carmichael and
MacLeod (1997), Fujiwara-Greve and Okuno-Fujiwara (2009) or Izquierdo et al. (2021)
are different from each other and, in the first two cases, are not consistent with stan-
dard definitions of neutral stability (see appendix A). Our approach to define neutral
stability starts by characterizing an adequate payoff function for strategies in terms of
population states. Once this is done, it becomes natural and straightforward to adapt a
standard definition of neutral stability (Banerjee and Weibull, 2000) to repeated games
with endogenous separation. We then show that neutral stability thus defined guaran-
tees Lyapunov stability in the replicator dynamics for games with endogenous separa-
tion. Section 4 introduces path-protecting strategies, and shows how these strategies can
constitute monomorphic neutrally stable states for sufficiently high exogenous continu-
ation probabilities. Here we also provide a folk theorem for neutrally stable strategies
in games with endogenous separation. Section 5 discusses polymorphic neutrally stable
states, shows a strong limitation to the existence of polymorphic equilibria made up by
different path-protecting strategies, and extends the concept of path-protecting strategy
to path-protecting equilibrium state. Finally, section 6 concludes the paper. Most of the
proofs can be found in appendix D.

2 Repeated Games with endogenous separation

In this section we present repeated Games with Endogenous Separation derived from
normal-form stage games. For simplicity, we focus the presentation and the analysis on
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symmetric two-player stage games.
We consider a unit-mass population of agents who are matched in couples or part-

nerships to play a symmetric two-player normal-form stage game. The stage game G =
{A,U} is defined by an action set A = {a1, ..., an}, and a payoff function U : A2 → R,
where U(ak, al) represents the payoff obtained by a player using action ak whose op-
ponent plays action al. Every stage game G has an associated repeated game with
endogenous separation GEnds, which is characterized in this section. Following Mailath
and Samuelson (2006), we refer to choices in the stage game G as actions, reserving
strategy for behavior in the repeated game.

2.1 Strategies in GEnds

After playing a stage game G, partnerships may remain together and play the stage
game again. A partnership is broken if either one of the players, according to their
strategy, decides to break it (endogenous separation) or if some exogenous factor breaks
the partnership, which happens with probability (1 − δ) ∈ (0, 1) after every interac-
tion (exogenous separation). Thus, δ is the continuation probability of the partnership
assuming that both players decide to stay. At the beginning of every (discrete) time
period, all single players are randomly (re-)matched in partnerships, and then all play-
ers play the stage game, i.e., every player plays the stage game at every period, either
in newly-formed partnerships or in older ones. We assume there is no information flow
between partnerships.

Considering the sequence of action profiles taken in a partnership, let the stage-t
game, with t ∈ {1, 2, ...}, be the tth time that the stage game has been played in that
partnership, assuming the partnership has not been broken before. A strategy i for a
player determines the choices that the player would make given any past history of play
within a partnership. If the strategies followed by the two players in a partnership are
i and j, the action profile played at stage t (assuming the partnership survives to play

for the tth time together), is a
[t]
ij ≡ (a

[t]
i , a

[t]
j ) ∈ A2, where a

[t]
i is the action played by

the player using strategy i (at stage t) and a
[t]
j is the action played by the player using

strategy j.
Denoting the null (empty) history by a[0], and taking (A2)0 ≡ {∅}, a history of play

of length t ≥ 0, a[0,t] = (a[0], a[1], ..., a[t]) ∈ (A2)t, is a sequence of t action profiles.5

The set of all possible histories of any length (including the empty history, or history of
length 0) is

H ≡
∞⋃
t=0

(A2)t.

Let Ã ≡ A∪{break} be the set of choices, where break represents the decision to break the
current partnership. A strategy i for the repeated game is a mapping i : H → Ã, from
the set of possible histories to the set of choices, that prescribes one choice i(a[0,t]) ∈ Ã for

5a[0,t] represents some sequence of t action profiles, while a
[0,t]
ij represents the first t action profiles

generated by strategy i when playing against strategy j, assuming they do not break up before stage t.
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every possible history a[0,t], for every t ≥ 0. As players in a new partnership are assumed
to play at least once together before deciding whether to break their partnership, we
require i(∅) ∈ A. Let Ω be the set of strategies.

Note that:

� We assume 0 < δ < 1. The process for δ = 0, where every partnership is exoge-
nously broken after every stage game, would correspond to the standard framework
for evolutionary population games.

� Constraining the strategy space to strategies that never choose break provides an
evolutionary framework for standard indefinitely repeated games, where the stage
game is iteratively repeated with probability δ.

2.2 States and payoffs in GEnds

We consider populations where the number of different strategies being played at any
time is finite. Let xi be the fraction of the population using strategy i ∈ Ω. A (popula-
tion) state x is a strategy distribution over Ω with finite support S(x) ⊂ Ω, i.e., x is a
function from Ω to [0, 1] that:

i) assigns a positive value xi > 0 to each strategy i in a finite set S(x),

ii) assigns the value 0 to strategies that are not in S(x), and

iii) satisfies
∑

i∈S(x) xi = 1.

Let D be the set of distributions with finite support, and let ei represent the monomor-
phic state at which all players use strategy i (i.e., the distribution satisfying xi = 1 and
xj = 0 for every j ∈ Ω \ {i}).

Consider an index T for periods of play of the game in the population. At every
period, single players are matched and every player plays a stage game. In contrast,
index t refers to repetitions of the stage game within a partnership: at period T , after
matching and before playing the stage game, every partnership has its own value for t,
which, if the partnership has just been matched at that period, is set to 0 before playing
the stage game and becomes 1 after playing the stage game. For any pair of strategies
i and j, let their endogenous break-up period Tij ≥ 1 be the number of stages that an
i9j partnership is to play together if the partnership is not broken by exogenous factors
(i.e., the number of stage games they play together before one of them decides to break
up). If an i9j partnership never breaks up endogenously, let Tij = ∞.

To calculate the average payoff Fi(x) obtained by players using strategy i when the
population state is x (average per player in each period), we consider the associated
stationary strategy distribution p in the pool of singles, which satisfies at every period
T that:

� Before matching, the mass of players in the pool of singles is a stationary value ϕ.
The mass of single i-players in the pool is ϕ pi.
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� After matching, the mass of i-players just matched to j-players, i.e., the mass of
i-players in newly-formed (0-period-old) i9j partnerships, is ϕ pi pj .

� For 1 ≤ t ≤ Tij , the mass of i-players in (t− 1)-period-old i9j partnerships (after
matching and before playing), is ϕ pi pj δ

t−1. These are the i-players that were
matched in i9j partnerships (t− 1) periods ago and have survived exogenous (and
endogenous) separation to play their tth stage game in the current period T . The
total mass or fraction of i-players in the population is then

xi = ϕ
∑

j∈S(x)

pi pj

Tij∑
t=1

δt−1 = ϕ
∑

j∈S(x)

pi pj
1− δTij

1− δ

and considering that
∑

j∈S(x) xj = 1, we have

xi =
pi

∑
j∈S(x) pj(1− δTij )∑

k,j∈S(x) pk pj(1− δTkj )
. (1)

Equation (1) defines a function f : D → D such that x = f(p), which provides the
population state x corresponding to pool state p.

� Let (a
[t]
i , a

[t]
j ) ∈ A2 be the action profile played at the tth stage of an i-j partnership,

with the first action in the profile corresponding to the player using strategy i and
the second action in the profile corresponding to the player using strategy j. The
total payoff obtained (at each and every period T ) by the mass of i-players is

ϕ
∑

j∈S(x)

pi pj

Tij∑
t=1

δt−1 U(a
[t]
i , a

[t]
j ),

so, dividing by the mass of i-players, we have that the per-period per-player average
payoff to an i-player is

F p
i (p) ≡ (1− δ)

∑
j∈S(x) pj

∑Tij

t=1 δ
t−1 U(a

[t]
i , a

[t]
j )∑

j∈S(x) pj (1− δTij )
, (2)

which is defined for every i ∈ Ω.

From (2) we have a formula for F p
i (p) that provides the payoff to strategy i corre-

sponding to pool state p, and from (1) we have a formula x = f(p), that provides the
population state x corresponding to pool state p. In order to use existing results and
concepts from the literature in population games, it would be convenient to have payoff
functions Fi that provide the payoff to strategy i corresponding to population state x,
i.e., Fi(x). Considering x = f(p) as defined in (1), there is an inverse function f−1
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such that p = f−1(x) (Izquierdo et al., 2021), so we can define payoff functions Fi from
population states as

Fi(x) = F p
i (f

−1(x)). (3)

Interestingly, for more than three strategies, f−1(x) does not admit a general closed-
form algebraic expression (Izquierdo et al., 2021). Our results are based on a series of
properties of the payoff functions Fi(x) that we indicate in the following section.

Finally, for a group of players with strategy distribution y ∈ D entering a population
with strategy distribution x, we define the average payoff of y against x, E(y, x), as:

E(y, x) ≡
∑

i∈S(y)

yiFi(x). (4)

We can interpret this payoff as the average payoff obtained by a very small mass of
players whose strategy distribution is y (sometimes called mutants or entrants) when
they play in a population of players whose strategy distribution is x.

2.3 Properties of the payoff functions for GEnds

The payoff functions Fi : D → R, defined in (3) for every i ∈ Ω, satisfy the following
properties:

� At monomorphic population states (where x = ej = p) we have, from (2):

Fi(ej) =
1− δ

1− δTij

Tij∑
t=1

δt−1 U(a
[t]
i , a

[t]
j ). (5)

Note that the payoff Fi(ej) to an i-player in a population of j-players is a convex

combination of the stage payoffs U(a
[t]
i , a

[t]
j ) for 1 ≤ t ≤ Tij .

� It follows from (2), (3) and (5) that, for p = f−1(x), we have

Fi(x) = F p
i (p) =

∑
j∈S(x)

pj (1− δTij )∑
k∈S(x) pk (1− δTik)

Fi(ej), (6)

which shows that Fi(x) is a convex combination of the payoffs Fi(ej) for j ∈ S(x),
with (strictly) positive coefficients for the convex combination.

Let the path a
[1,Tij ]
ij = ((a

[1]
i , a

[1]
j ), (a

[2]
i , a

[2]
j ), ..., (a

[Tij ]
i , a

[Tij ]
j )) be the series of Tij action

profiles that strategy i generates when playing with strategy j until they decide to break

up. Let the repeated path h
[∞]
ij be the infinite series of action profiles that corresponds

to (or is generated by) one i-player in a population of j-players, with no exogenous
separation and with re-matching after each endogenous separation:

h
[∞]
ij ≡ (a

[1,Tij ]
ij , a

[1,Tij ]
ij , ...). (7)
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For a sequence of T action profiles a[1,T ], where the tth action profile in the sequence
is a[t] ∈ A2, let

V (a[1,T ]) ≡ 1− δ

1− δT

T∑
t=1

δt−1U(a[t]).

From the previous definitions and the properties of geometric series, we have:

Fi(ej) = V
(
a
[1,Tij ]
ij

)
= V

(
h
[∞]
ij

)
= (1− δ)

∞∑
t=1

δt−1U(h
[t]
ij ), (8)

where h
[t]
ij is the tth action profile in h

[∞]
ij . Formula (8) shows that Fi(ej) coincides

with V (h
[∞]
ij ), which is the normalized discounted value of the infinite sequence of action

profiles in the repeated path h
[∞]
ij .

Note that in the framework we have presented for games with endogenous separation
there is no discounting, and Fi(ej) is defined as a per-period per-player average payoff
(averaged over individuals whose prevalence in t-period-old partnerships is proportional
to δt). However, the definition of repeated path in (7) allows to establish an equivalence

between Fi(ej) and the normalized discounted value V (h
[∞]
ij ). It follows from this equiv-

alence that any two strategies j1 and j2 that generate the same repeated path against
i-players obtain the same payoff against i-players, even if they have different break-up
periods, i.e., even if they have different paths (as long as these paths, when repeated,
generate the same sequence), i.e.:

h
[∞]
j1i

= h
[∞]
j2i

=⇒ Fj1(ei) = Fj2(ei). (9)

3 Equilibria in games with endogenous separation: Nash and neutrally
stable states

In this section we adapt standard definitions of Nash state and neutrally stable state
to games with endogenous separation. For completeness, and in order to introduce the
notation, we begin with the definitions for the stage game G.

3.1 Definitions for the stage game G

Here we present the main definitions and concepts for a stage game G that will be useful
for the analysis of the repeated game with endogenous separation GEnds derived from
G.

The best-response payoff to action a is the best payoff that an action can obtain
when playing against a, defined by

UBR(a) ≡ max
al∈A

U(al, a).
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The set of best-response actions to action a, BR(a), is the set of actions that obtain the
best-response payoff against a. If a ∈ BR(a), i.e., if action a is a best-response to itself,
we say that:

� (a, a) is a (symmetric) Nash profile.

� a is a Nash action.

The pure minmax payoff of G, m, is the minimum of the best-response payoffs to
actions in A:

m ≡ min
a∈A

UBR(a).

Every best-response payoff to an action is greater than or equal to m, i.e., UBR(a) ≥
m ∀a ∈ A.

A minmax action ã ∈ A is an action such that UBR(ã) = m. By choosing a minmax
action, a player can guarantee that her opponent’s payoff does not exceed m.

Let q ∈ ∆(A) ≡ {(qk)nk=1 ∈ Rn
+ :

∑n
k=1 qk = 1} be a distribution over actions or

mixture of actions. The payoff of action a against q is defined by Ua(q) ≡
∑n

l=1 U(a, al)ql.
With some abuse in notation, the payoff of mixture p ∈ ∆(A) against q ∈ ∆(A) is defined
by

U(p, q) ≡
n∑

k=1

pk Uak(q) =
∑
k,l

pk ql U(ak, al).

The best-response payoff against q is defined by

UBR(q) ≡ max
p∈∆(A)

U(p, q) = max
a∈A

Ua(q).

The set of best-response actions to q, BR(q), is the set of actions that obtain the best-
response payoff against q.

A (symmetric) Nash equilibrium of G is a distribution q ∈ ∆(A) such that

U(q, q) = UBR(q).

The (mixed) minmax payoff m of G is the mimimum of the best-response payoffs to
mixtures in ∆(A):

m ≡ min
q∈∆(A)

max
a∈A

Ua(q).

Every best-response payoff (to some mixture) is greater than or equal tom: UBR(q) ≥
m, i.e., independently of q, if a is a best response to q, then the payoff of a against q is
at least m. It follows from the definitions that m ≤ m.

There are several definitions of neutral stability (Maynard Smith, 1982) that are
equivalent in this setting (Bomze and Weibull, 1995). Here we adopt the following one:

A distribution over actions q ∈ ∆(A) is neutrally stable if:

U(q, q) ≥ U(p, q) for every p ∈ ∆(A), i.e., q is Nash, and

U(p, q) = U(q, q) =⇒ U(q, p) ≥ U(p, p).
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Neutral stability requires that q is Nash and that it is robust to the introduction
of (any combination of) alternative best responses to q, in the sense that q will not do
worse than the average (U(q, p) ≥ U(p, p)) when such alternative best responses are
introduced. Neutral stability implies Lyapunov stability under the replicator dynamics
(Thomas, 1985; Bomze and Weibull, 1995), and, with the previous definition of neutral
stability, this result still holds if:

� The payoff functions Ua(q) are defined in a different way, not necessarily linear in
q, provided that they are Lipschitz continuous.

� The aggregate payoff is linear in the first argument: U(p, q) ≡
∑n

k=1 pk Uak(q).

� The second condition for neutral stability applies only locally, i.e., for every p in a
neighborhood of q in ∆(A).

3.2 Nash states in GEnds

A strategy j is a best response to state x if, when playing against x, no other strategy (or
distribution) can obtain a payoff greater than j’s payoff, i.e., if and only if Fj(x) ≥ Fk(x)
for every k ∈ Ω. Let BR(x) be the set of best-response strategies to x. A strategy
distribution y ∈ D is a best response to state x if and only if E(y, x) ≥ E(z, x) for every
z ∈ D. It follows from (4) that y is a best response to x if and only if every strategy in
its support S(y) is a best response to x.

Definition 1 (Nash equilibrium state). A state x ∈ D is Nash (short for Nash equilib-
rium state) if E(x, x) ≥ Fj(x) for every j ∈ Ω. Equivalently, a state x ∈ D is Nash if it
is a best response to itself.

If a monomorphic state ei is Nash, we say that strategy i is a Nash strategy. Conse-
quently, a strategy i is Nash if and only if Fi(ei) ≥ Fj(ei) for every j ∈ Ω.

Let us now consider some implications of being a Nash strategy. The action profiles
played at a monomorphic population ei are always symmetric, i.e. in the set {(a, a)}a∈A.
Consequently, the payoff Fi(ei) in a monomorphic population (see equation (5)) is a
convex combination of the payoffs {U(a, a)}a∈A corresponding to the main diagonal of
the payoff matrix of the stage game G. This implies that the maximum symmetric
stage-game payoff M ≡ maxa∈A U(a, a) is an upper bound for Fi(ei).

If i is a Nash strategy, it cannot be beaten by any other strategy in its corresponding
monomorphic population ei; in particular, strategy i cannot be beaten by what we call
reap-and-leave strategies. Reap-and-leave strategies are those which, in a partnership
with i, play exactly as i up to stage T ≤ Tii, at stage T adopt a best-response action
to the action chosen by i, and then break the partnership. We say that such strategies
reap-and-leave i at stage T .

The fact that being Nash implies robustness against reap-and-leave strategies allows
us to derive simple conditions that must be satisfied by Nash strategies and Nash states
in general. The next two propositions are based on robustness against strategies that
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reap-and-leave i at the first stage of an i9j partnership, while the third proposition
considers robustness against a strategy that reaps-and-leaves i at stage Tii.

Proposition 3.1. The first action a∅ played by a Nash strategy in GEnds must satisfy

UBR(a∅) ≤ M,

where UBR(a∅) is the best-response stage payoff to action a∅ and M = maxa∈A U(a, a)
is the maximum symmetric stage-game payoff.

We will consider the Prisoner’s Dilemma and the Hawk-Dove game (also known as
Snowdrift), with actions C and D (table 1). In the Prisoner’s Dilemma, C stands for
cooperate and D for defect; in the Hawk-Dove game, C corresponds to Dove and D to
Hawk. In both cases, coordinating on C is more efficient than on D (i.e., the maximum
diagonal stage payoff is M = UCC > UDD), and D is the minmax action. For the
examples, we use the simpler notation Uak,al ≡ U(ak, al).

In the Prisoner’s Dilemma (UCD < UDD < UCC < UDC), D is a dominant action
and (D,D) is a Nash action profile. In the Hawk-Dove (UDD < UCD < UCC < UDC),
the best-response to each action is the other action (this is an anti-coordination game).
We will also consider the so-called 1-2-3 coordination game (table 1).

C D

C 3 1

D 4 2

C D

C 3 2

D 4 1

1 2 3

1 1 0 0

2 0 2 0

3 0 0 3

Table 1: Left: A Prisoner’s Dilemma game, with C for Cooperate and D for Defect. Middle: A
Hawk-Dove game, with C for Dove and D for Hawk. Right: the 1-2-3 coordination game.

Example 3.1. In the Prisoner’s Dilemma, the maximum symmetric stage-game payoff
M is UCC . For action C we have UBR(C) = UDC > M , and for action D, UBR(D) =
UDD < M , so action D is the only action that satisfies the condition in proposition 3.1.
Consequently, every Nash strategy must begin a partnership by playing action D: no
Nash strategy can be “nice” (Axelrod, 1984). This rules out strategies such as Tit for
Tat, which cannot give rise to a monomorphic Nash equilibrium in a Prisoner’s Dilemma
with endogenous separation.

Example 3.2. In the Hawk-Dove, the maximum symmetric stage-game payoff M is
UCC . For action C (Dove) we have UBR(C) = UDC > M and for action D (Hawk)
we have UBR(D) = UCD < M , so D is the only action that satisfies the condition in
proposition 3.1. Consequently, every Nash strategy must begin a partnership by playing
D (Hawk).

Example 3.3. In 1-2-3 coordination, the maximum diagonal payoff is also the maximum
possible payoff, so proposition 3.1 does not rule out any action as first action to be chosen
by a Nash strategy.

11



Proposition 3.2. The minmax payoff m of a stage game G is a lower bound for the
payoff at Nash states of GEnds:

x ∈ D is Nash =⇒ E(x, x) ≥ m.

The pure minmax payoff m of a stage game G is a lower bound for the payoff Fi(ei) at
a Nash strategy i of GEnds, and M ≡ maxa∈A U(a, a) is an upper bound:

i ∈ Ω is Nash =⇒ m ≤ Fi(ei) ≤ M.

Example 3.4. In the Prisoner’s Dilemma, the pure minmax payoff is m = UDD and
the maximum diagonal payoff is M = UCC , so payoffs to Nash strategies are between the
two symmetric payoffs UDD and UCC . For the Prisoner’s Dilemma on table 1, payoffs
to Nash strategies are between 2 and 3.

Example 3.5. In the Hawk-Dove, the pure minmax payoff is m = UCD and the max-
imum diagonal payoff is M = UCC , so payoffs to Nash strategies are between the two
payoffs for a C-player (Dove): UCD and UCC . For the Hawk-Dove on table 1, payoffs
to Nash strategies are between 2 and 3.

Example 3.6. In 1-2-3 coordination, the pure minmax payoff is m = U11 and the
maximum diagonal payoff is M = U33, so payoffs to Nash strategies are between U11 and
U33. For the 1-2-3 coordination game on table 1, payoffs to Nash strategies are between
1 and 3.

Proposition 3.3. If i is a Nash strategy with finite Tii, then the action profile at the
break-up stage Tii of an i9i partnership is a Nash profile of the stage game G.

Example 3.7. In a Prisoner’s Dilemma with endogenous separation, the action profile
at the break-up stage of a Nash strategy with finite Tii has to be (D,D).

Example 3.8. In a Hawk-Dove game, neither (C,C) nor (D,D) are Nash profiles, so
in a Hawk-Dove game with endogenous separation there is no Nash strategy i with finite
Tii.

For the Prisoner’s Dilemma, Proposition 3.4 below strengthens the previous result.

Proposition 3.4. In the Prisoner’s Dilemma with endogenous separation, Nash strate-
gies with finite Tii never play C in the equilibrium path.

Proposition 3.4 follows from considering that, in the Prisoner’s Dilemma with en-
dogenous separation, if a strategy i with finite Tii ever plays the action profile (C,C)
in an i9i partnership, then there is a stage Tl in [1, Tii] at which (C,C) is played for
the last time, and a strategy j that reaps-and-leaves i at stage Tl beats i (in the sense
Fj(ei) > Fi(ei)), so i cannot be Nash. Proposition 3.4 can be extended to games G
with only one symmetric Nash action profile which is the least efficient of the symmetric
action profiles.

12



Proposition 3.5. Let (aN , aN ) be a Nash profile of G.

� Every strategy i that always chooses action aN before breaking a partnership is a
Nash strategy of GEnds.

� Any mixture of such strategies is a Nash state of GEnds.

Example 3.9. In a Prisoner’s Dilemma with endogenous separation, any strategy i that
for every history of length between 0 and Tii (for some Tii > 0) plays D, and breaks every
partnership that gets to stage Tii, is a Nash strategy (i.e., ei is a monomorphic Nash
state). Any mixture of such strategies is a Nash (polymorphic) state.

Example 3.10. In a Hawk-Dove game, neither (C,C) nor (D,D) are Nash profiles, so
we cannot use proposition 3.5 to construct Nash strategies for the game with endogenous
separation.

Example 3.11. In 1-2-3 coordination, we can use proposition 3.5 to construct Nash
strategies and Nash states for the game with endogenous separation from either of the
three Nash action profiles of the stage game.

One can derive general existence theorems for Nash equilibria in games with endoge-
nous separation for sufficiently large values of δ (folk theorems). We will do so in the
next section using the (stronger) concept of neutral stability.

3.3 Neutrally stable states in GEnds

In this section we define neutrally stable strategy and neutrally stable state in games with
endogenous separation. Our definitions are direct adaptations of a standard definition
of neutral stability (Banerjee and Weibull, 2000): a state is neutrally stable if it is (i)
a best response to itself, and also (ii) a weakly-better response to all its best-response
states (than such states are to themselves).

Definition 2 (Neutrally stable strategy). A strategy i ∈ Ω is neutrally stable if

Fi(ei) ≥ Fj(ei) for every j ∈ Ω, i.e., i is Nash, and

Fi(y) ≥ E(y, y) for every y ∈ D such that E(y, ei) = Fi(ei).

Note that, given that i is Nash, condition E(y, ei) = Fi(ei) means that y is a mixture
of best-response strategies to ei. Also, note that the definition of neutral stability requires
strategy i to satisfy Fi(y) ≥ E(y, y) whenever y is a mixture of alternative best-response
strategies to ei. This robustness to every possible mixture of best response strategies is
stronger than robustness against all best response strategies considered individually, as
defined by the following condition:

Fi(ej) ≥ Fj(ej) for every j ∈ Ω that is a best-response to ei.

This latter condition is necessary but not sufficient for neutral stability. The reason is
that, if j1 and j2 are two best-response strategies to ei, and y is a mixture of j1 and

13



j2, then F (y, y) depends not only on the payoffs Fj1(ej1) and Fj2(ej2) of each best-
response strategy against itself, but also on the payoffs Fj1(ej2) and Fj2(ej1) for the
crossed interactions.

Definition 3 (Neutrally stable state). A state x ∈ D is neutrally stable if

E(x, x) ≥ E(y, x) for every y ∈ D, i.e., x is Nash, and

E(x, y) ≥ E(y, y) for every y ∈ D such that E(y, x) = E(x, x).

It follows from the corresponding definitions that a monomorphic state ei is neutrally
stable if and only if strategy i is neutrally stable.

Considering a finite set of strategies, we can define the replicator dynamics for games
with endogenous separation as a direct adaptation of the standard replicator dynamics
(Taylor and Jonker, 1978).

Definition 4 (Replicator dynamics). Consider a game with endogenous separation and
any finite set of strategies S ⊂ Ω. Let the replicator dynamics in S be the set of differ-
ential equations

ẋi = xi[Fi(x)− E(x, x)] (10)

for i ∈ S.

By numbering the s strategies in S, we can associate every strategy distribution with
support contained in S with a point in the standard simplex ∆(S) ⊂ Rs.6

Proposition 3.6. Let x ∈ D be neutrally stable, and let S be any finite (numbered)
superset of its support. Let x̂ ∈ ∆(S) be the point that represents x in Rs. Then x̂ is a
Lyapunov stable rest point of the (standard) replicator dynamics in ∆(S).

Proposition 3.6 shows that, if x is neutrally stable according to definition 3, then
its associated point x̂ representing x in ∆(S) is a Lyapunov stable rest point in the
replicator dynamics, considering any finite set of strategies S that includes:

� the support of x (incumbents), and

� any other set of strategies (potential invaders), whatever those potential invaders
may be.

Proposition 3.7 below shows a strong limitation for the stability of strategies with
finite break-up period: if none of the symmetric action profiles of G that obtain the
maximum symmetric payoff M = maxa∈A U(a, a) are Nash, then no strategy i with
finite break-up period Tii can be neutrally stable.

Proposition 3.7. For stage game G, let AM ≡ {(ak, ak) : U(ak, ak) = M} be its set of
symmetric action profiles with payoff M = maxa∈A U(a, a).

6The s strategies in S can be numbered following any order i1, i2, ..., is−1, is, and then we can define
x̂k = xik for k ∈ {1, ..., s}.
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� If AM does not contain any Nash profile of G, then no strategy i with finite Tii is
neutrally stable in GEnds.

� Otherwise, any neutrally stable strategy i with finite Tii obtains the payoff Fi(ei) =
M , and the action profiles played in its equilibrium ei are Nash profiles contained
in AM .

Example 3.12. In the Prisoner’s Dilemma and in the Hawk-Dove game, the symmet-
ric action profile with maximum stage payoff is (C,C), which is not a Nash profile.
Consequently, in the Prisoner’s Dilemma and in the Hawk-Dove game with endogenous
separation, no strategy with finite break-up period Tii is neutrally stable.

Example 3.13. In 1-2-3 coordination, the symmetric action profile with maximum pay-
off is (a3, a3), which is a Nash profile. Consequently, any neutrally stable strategy with
finite Tii must always play (a3, a3) in the equilibrium path.

4 Stronger equilibrium concepts. Path-protecting strategies

In this section we discuss equilibrium concepts stronger than neutral stability. We first
consider evolutionarily stable strategies, which cannot exist in games with endogenous
separation. We then define two weaker equilibrium concepts, namely path-protecting and
weakly path-protecting strategies, which imply neutral stability and whose existence is
guaranteed in many games with endogenous separation, for sufficiently large values of δ.

4.1 Evolutionarily stable strategies

We start by considering the standard static equilibrium concept of evolutionary stability
(Maynard Smith and Price, 1973).

Definition 5 (Evolutionarily stable strategy). A strategy i ∈ Ω is evolutionarily stable
if

Fi(ei) ≥ Fj(ei) for every j ∈ Ω, i.e., i is Nash, and

Fi(y) > E(y, y) for every y ̸= ei ∈ D such that E(y, ei) = Fi(ei).

Evolutionary stability for a Nash strategy i requires that there are no alternative
best-response strategies j with Fi(ej) = Fj(ej). The concept of path-equivalent strategy,
defined below, will be useful to show that, in games with endogenous separation, there are
no evolutionarily stable strategies. The argument extends easily to polymorphic states
with finite support, and is basically the same argument used to show that there are no
evolutionarily stable strategies in standard repeated games (Selten and Hammerstein,
1984).

Definition 6 (Path-equivalent strategy). Strategy j is path-equivalent to strategy i if

a
[1,Tjj ]
jj = a

[1,Tii]
ii .

15



Considering that the action profiles in a
[1,Tii]
ii are symmetric, it follows that if j

is path-equivalent to i, then a
[1,Tii]
ii = a

[1,Tji]
ji = a

[1,Tij ]
ij = a

[1,Tjj ]
jj and, consequently,

Fi(ei) = Fj(ei) = Fi(ej) = Fj(ej). If i is Nash and j is path-equivalent to i, then j
is an alternative best-response to i (i.e., Fj(ei) = Fi(ei)) that satisfies Fi(ej) = Fj(ej).
By modifying the choices made by strategy i after histories a[0,t] that do not belong to

the set of histories {a[0,t]ii }t∈[0,Tii] generated by an i9i partnership, one can create (an
infinite number of) strategies that are path-equivalent to strategy i. This proves that
no strategy is evolutionarily stable in a game with endogenous separation.

For completeness, in appendix B we discuss another equilibrium concept stronger
than neutral stability: robustness against indirect invasions (van Veelen, 2012). We
show that in many games with endogenous separation, such as those whose stage game
is the Prisoner’s Dilemma or the Hawk-Dove game, no strategy can be robust against
indirect invasions.

4.2 Path-protecting strategies

In this section we define path-protecting and weakly path-protecting strategies. Both
concepts imply neutral stability. Their existence will be discussed later.

Definition 7 (Path-protecting strategy). A strategy i ∈ Ω is path-protecting if:

a
[1,Tjj ]
jj ̸= a

[1,Tii]
ii =⇒ Fj(ei) < Fi(ei).

In words, a strategy i is path-protecting if, when playing against i, only those strate-

gies that are path-equivalent to i (those with a
[1,Tjj ]
jj = a

[1,Tii]
ii ) obtain the same payoff as

i, while every strategy j that is not path-equivalent to i obtains a strictly lower payoff.
Note that a necessary condition for a strategy i to be path-protecting is that Tii = ∞.

The reason is that, if Tii is finite, any strategy j with Tjj > Tii whose path of play up

to stage Tii coincides with that of i (i.e., a
[1,Tii]
jj = a

[1,Tii]
ii ) satisfies Fj(ei) = Fi(ei).

Considering that a
[1,Tjj ]
jj = a

[1,∞]
ii if and only if a

[1,Tij ]
ij = a

[1,∞]
ii , an equivalent definition

for a path-protecting strategy i is: a strategy i is path-protecting if Tii = ∞ and

a
[1,Tij ]
ji ̸= a

[1,∞]
ii =⇒ Fj(ei) < Fi(ei).

This alternative definition shows that a path-protecting strategy i “protects” the equi-
librium path against strategies that, when playing with i, deviate at some point from i’s
choice, either by choosing a different action or by breaking the partnership.

We now define a concept weaker than path-protecting strategy, which will turn out
to be sufficient to guarantee neutral stability, namely weakly path-protecting strategy.

Before doing so, for convenience, let us recall that h
[∞]
ij ≡ (a

[1,Tij ]
ij )∞ is the infinite

sequence of action profiles generated by strategy i in a population of j-players with no

exogenous separation (7), and Fi(ej) coincides with V (h
[∞]
ij ), the normalized discounted

value of (the action profiles in) h
[∞]
ij .
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Definition 8 (Weakly path-protecting strategy). A strategy i ∈ Ω with Tii = ∞ is
weakly path-protecting if:

h
[∞]
ji ̸= h

[∞]
ii =⇒ Fj(ei) < Fi(ei).

In words, a strategy i is weakly path-protecting if

� it never breaks a partnership with a partner who takes the same actions as i does,
and

� if the repeated path h
[∞]
ji that strategy j generates in a population of i-players is

different from the path that i generates, then j obtains a strictly lower payoff (in
a population of i-players) than i.

Note that any strategy j that at some stage of an i9j partnership adopts a different

action from the action adopted by i generates a different repeated path h
[∞]
ji ̸= h

[∞]
ii .

Strategies j that, before breaking an i9j partnership at a finite stage Tij , do not adopt

different actions from i’s, may still generate the same repeated path h
[∞]
ji = h

[∞]
ii , but

only if h
[∞]
ii is an infinite repetition of the finite sequence of Tij (symmetric) action

profiles a
[1,Tij ]
ii = a

[1,Tij ]
ji .

For any strategy i with a path a
[1,∞]
ii that is not an infinite repetition (a[1,T ])∞ of

some finite sequence a[1,T ] of action profiles, being weakly path-protecting is equivalent
to being path-protecting, because, in that case, the only way a strategy i can protect the

repeated path h
[∞]
ii is by protecting the path a

[1,∞]
ii . By contrast, strategies i with a path

a
[1,∞]
ii that is an infinite repetition of some finite sequence may be weakly path-protecting,

but cannot be path-protecting.
Considering equation (9), it follows from definition 7 that if strategy i is weakly

path-protecting, then:

� Strategy i is Nash, because strategies with the same repeated path h
[∞]
ji = h

[∞]
ii

obtain the same payoff Fj(ei) = Fi(ei) and strategies with different repeated path
obtain a lower payoff Fj(ei) < Fi(ei), so Fj(ei) ≤ Fi(ei) for every j.

� Every best-response strategy j to ei must generate the same (symmetric) repeated

path h
[∞]
ji = h

[∞]
ii . This implies that, if j is a best-response to ei, then Fi(ej) =

Fj(ei) = Fi(ei). It also implies that if y is a mixture of best-response strategies to
ei, then Fi(y) = Fi(ei).

Our next result states that (weakly) path-protecting strategies are neutrally stable.
Its proof shows that, if strategy i is weakly path-protecting, then any mixture y of
best-response strategies to ei must satisfy E(y, y) = Fi(y). The reason is that every

repeated path h
[∞]
j1j2

generated between any two best-response strategies (j1 and j2) to

ei must also be equal to h
[∞]
ii , so if y is a mixture of best-response strategies to ei, then

E(y, y) = Fi(ei) = Fi(y).
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Proposition 4.1. (Weakly) path-protecting strategies are neutrally stable.

Weakly path-protecting strategies can be easily found if the stage game has some
strict Nash profile, as our next result shows.

Proposition 4.2. If (â, â) is a strict Nash profile of a stage game G, then any strategy
of GEnds that:

� chooses action â whenever it does not choose to break a partnership, and

� does not break a partnership while profile (â, â) is played

is weakly path-protecting (and, consequently, neutrally stable).

Example 4.1. In the Prisoner’s Dilemma, (D,D) is a strict Nash profile. Consequently,
any strategy that never plays C and never breaks up after a history of mutual defections is
weakly path-protecting. For instance, the strategy “always play D and never leave”, that
maps every history to D, is weakly path-protecting and, consequently, neutrally stable.

Much more generally than the case in which G has some strict Nash profile, Propo-
sition 4.3 below shows that, for large enough δ, every stage game G with M > m admits
path-protecting strategies. Proposition 4.3 leads to a folk theorem for neutral stabil-
ity which basically says that, for large enough δ, any payoff between m and M can be
obtained as the equilibrium payoff of some neutrally stable strategy.

Before stating proposition 4.3, let us define the average stage-payoff for a finite
sequence of action profiles. Considering a sequence Φ = (Φ[t])Tt=1of T action profiles,
where each Φ[t] ∈ A2 is an action profile, let the average stage-payoff of sequence Φ be

ŪΦ ≡
∑T

t=1 U(Φ[t])

T
.

The average stage payoff is specially relevant for large δ and for paths that end up
repeating some sequence Φ of action profiles, because the normalized payoff of any
infinite path ([...],Φ,Φ,Φ, ...) which, after a finite number of periods, eventually repeats
the finite sequence of outcomes Φ forever, converges to the average stage-payoff ŪΦ as δ
goes to 1.

Proposition 4.3. Let Φ be a finite sequence of symmetric action profiles with average
stage payoff ŪΦ strictly greater than the pure minmax payoff. For large enough δ < 1,
there are path-protecting strategies whose equilibrium path, after a finite transient phase,
is an infinite repetition of the sequence Φ, and whose equilibrium payoff converges to ŪΦ

as δ → 1.

Considering that ŪΦ can approximate any real payoff between m and M as much as
desired, Proposition 4.3 has as a corollary the following folk theorem for neutrally stable
strategies.
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Corollary 4.4. In a game with endogenous separation, for large enough values of the
continuation probability δ, any payoff between the pure minmax payoff m and the maxi-
mum symmetric payoff M of the stage game can be obtained, or approximated as much
as desired, as the equilibrium payoff of some neutrally stable strategy.

The proof of proposition 4.3 is included in appendix D, but here we provide a sketch.
The proof is constructive and considers a strategy i such that:

� It never breaks a partnership with a partner who takes the same actions as i does
(i.e., Tii = ∞).

� As soon as strategy j in an i9j partnership deviates from i’s own action, strategy i
breaks the partnership. Because of this condition, we know that an i9j partnership
will not survive if j chooses a different action from the action chosen by i. Naturally,
it will not survive either if j chooses to break the partnership. The only way in
which an i9j partnership can survive indefinitely is if j chooses the same initial

action as i does and, for every history a
[0,t]
ii corresponding to an i9i partnership, j

chooses the same action as i does.

� The path a
[1,∞]
ii is made up by three phases, each one associated to one finite

sequence of symmetric action profiles (Φm,Φf and Φp), with

a
[1,∞]
ii = (Φm,Φf , (Φp)

∞),

where Φm is a repetition of a minmax action profile, Φf is arbitrary (but finite),
Φp (which corresponds to the infinitely repeated pattern Φ in proposition 4.3) has
an average stage payoff greater than the pure minmax payoff m of the stage game,
and (Φp)

∞ represents an infinite sequence of action profiles made up by repeating
the sequence Φp infinitely.

� The first phase in a
[1,∞]
ii is a Tm-period-long phase during which a minmax action

profile (ã, ã) is played, producing the sequence

Φm = a
[1,Tm]
ii = ((ã, ã), (ã, ã), ..., (ã, ã)).

During this minmax or deviation-deterring phase, the stage payoff is U(ã, ã) ≤ m
and any strategy j that deviates in choice during this phase obtains a payoff
Fj(ei) ≤ m.

� The second phase in the path a
[1,∞]
ii is an arbitrary finite sequence of Tf ≥ 0

(symmetric) action profiles.

� The last phase, or pattern-playing phase, in a
[1,∞]
ii is an infinite repetition of a finite

sequence (pattern) Φp of Tp symmetric action profiles with average stage payoff
ŪΦp > m.
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The proof of proposition 4.3 combines three intermediate results to create path-
protecting strategies. These strategies are initially built to be weakly path-protecting,
and then fine-tuned so the path when they play against themselves is not an infinite
repetition of any finite sequence of action profiles, so they are also path-protecting.

� The first result shows that, in order to prove that the implication h
[∞]
ji ̸= h

[∞]
ii =⇒

Fj(ei) < Fi(ei) holds for every strategy j, it is enough to prove that it holds for

strategies j whose repeated path h
[∞]
ji differs or deviates from h

[∞]
ii before repetition

of the pattern Φp begins, i.e., between periods t = 1 and t = Tm + Tf + Tp: if
every deviation before and up to period t = Tm + Tf + Tp is harmful, then every
deviation (no matter when) is harmful.

� The second result states that, for any given Φf and Φp (with ŪΦp > m ), the
deviation-deterring phase can be chosen to be long enough to guarantee that, for

sufficiently large δ, deviations in h
[∞]
ji from h

[∞]
ii at or before t = Tm+Tf +Tp lead

to payoffs Fj(ei) close to or below m.

� The third result states that, for sufficiently large δ, the payoff Fi(ei) is close to
ŪΦp > m.

Combining the three results shows that, given Φf and Φp, there is a length of the

deviation-deterring phase Tm such that, for large enough δ, h
[∞]
ji ̸= h

[∞]
ii implies Fj(ei) <

Fi(ei), so strategy i is weakly path protecting. Finally, by choosing Φp so that path

h
[∞]
ii is not an infinite repetition of a pattern, we make sure that strategy i is also

path-protecting.

Example 4.2. In a Prisoner’s Dilemma or in a Hawk-dove game, the minmax profile
is DD,7 so:

� For the deviation-deterring or minmax phase, Φm is a Tm-long series of DD action
profiles.

� For the pattern-playing phase, the infinitely repeated finite pattern Φp can be any
finite sequence of DD and CC action profiles with at least one CC in the sequence,
which guarantees an average stage payoff ŪΦp > m = UDD.

For instance, choosing Tm = 3, Φf = (CC,DD) and Φp = (CC), we obtain a strategy
i with path h∞ii = (DD,DD,DD |CC,DD | (CC)∞). For the stage payoffs shown on
table 1 for the Prisoner’s Dilemma, the sequence of payoffs corresponding to h∞ii is
(2, 2, 2, 3, 2, (3)∞), where ()∞ represents an infinite repetition of the payoffs in brackets,
so

Fi(ei) = (1− δ)(2 + 2δ + 2δ2 + 3δ3 + 2δ4 + 3
δ5

1− δ
) > 2.

The pattern Φp = (CC) begins to be repeated after period 6. Strategies j with Tji < 3
obtain a payoff Fj(ei) of at most the minmax payoff 2 < Fi(ei). For Tji = 4 the payoff

7For compactness, here we represent action profiles (D,D) as DD.
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Fj(ei) is bounded by that of the series (2, 2, 2, 4)∞, and for 5 ≤ Tji ≤ 6 the payoff is
bounded by that of the series (2, 2, 2, 3, 2, 4)∞. For δ > 0.71, Fi(ei) is greater than the
payoffs corresponding to both series, so i is path-protecting.

Example 4.3. In 1-2-3 coordination, the minmax profile is (a1, a1), so

� Φm is a Tm-long series of (a1, a1) action profiles.

� Φp can be any finite sequence of symmetric action profiles where at least one action
profile is not (a1, a1), which guarantees ŪΦp > m = U(a1, a1).

5 Polymorphic neutrally stable states

Let us now consider polymorphic neutrally stable states, in which players in a population
use different strategies (beyond those already considered in proposition 3.5).

One can start by looking for polymorphic states made up by combinations of (weakly)
path-protecting strategies, but our next result shows that, if two weakly path-protecting

strategies i and j have different paths a
[1,∞]
ii ̸= a

[1,∞]
jj , then they cannot both be in the

support of a neutrally stable state. Consequently, there are no neutrally stable states
with more than one (weakly) path-protecting strategy, unless the different strategies are
actually generating the same repeated path.

Proposition 5.1. If a neutrally stable state x has some (weakly) path-protecting strategy

i in its support then all the repeated paths in x are equal to h
[∞]
ii = a

[1,∞]
ii .

Proposition 5.1 shows that mixtures of path-protecting strategies with different paths
do not satisfy definition 3 of neutral stability.

We conclude with a series of definitions and a proposition that allow us to extend
some of the previous concepts to polymorphic states.

Definition 9 (Path-equivalent strategy in a set). Let S be a finite set of strategies
satisfying Tij = ∞ for every i, j ∈ S. We say that strategy k is path-equivalent in S to
strategy i ∈ S if, for every j ∈ S,

Tkj = ∞ and a
[1,∞]
kj = a

[1,∞]
ij .

The idea here is that, with each of the strategies in S, strategy k behaves exactly as

strategy i does, and there is no difference also between a
[1,∞]
ii and a

[1,∞]
kk .

Definition 10 (Path-protecting state). A population state x with finite support S(x) is
path-protecting if:

� Tij = ∞ for every i, j ∈ S(x), and

� If strategy j is not path-equivalent in S(x) to some strategy i ∈ S(x), then Fj(x) <
E(x, x).
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It follows from the definition that path-protecting states are Nash.

Definition 11 (Internally neutrally stable state). A state x is internally neutrally stable
if Fi(x) = E(x, x) for every i ∈ S(x) and F (x, y) ≥ F (y, y) for every y with support
contained in S(x).

This condition only considers strategies in the support of state x, and it is clearly a
necessary condition for neutral stability, which considers the whole strategy space.

Proposition 5.2. If a state is path-protecting and internally neutrally stable, then it is
neutrally stable.

In appendix C we present an example of a path-protecting and internally neutrally
stable equilibrium, for a Prisoner’s Dilemma with endogenous separation.

6 Conclusions

In the standard approach to repeated games, partners are tied to each other and do
not have a say on whether they wish to stay together or whether they prefer to leave
the partnership and form a new one. For many real-life situations, the field of games
with endogenous separation constitutes a natural and realistic extension of the standard
approach to repeated games.

Following some pioneers (most notably, Carmichael and MacLeod (1997)), a ma-
jor step forward to study games with endogenous separation was taken by Fujiwara-
Greve and Okuno-Fujiwara (2009).8 This seminal paper, while focused on the Prisoner’s
Dilemma, provided the first fundamental framework for the study of games with en-
dogenous separation taking into account the whole strategy space.9 Fujiwara-Greve and
Okuno-Fujiwara’s (2009) framework is based on the strategy distribution in the pool of
singles. In contrast, in this paper we develop an approach based on the distribution of
strategies in the population, or population state.10 This approach allows us to establish
clear links and differences between games with endogenous separation and standard re-
peated games, including the definition of appropriate payoff functions for (a group of)
potential invaders, the adaptation of static equilibrium concepts such as neutral stability,
and the adaptation of standard dynamics such as the replicator dynamics.

In this paper, we have also introduced the notion of path-protecting strategy (an
equilibrium concept stronger than neutral stability), and provided an existence result
for path-protecting strategies in games with endogenous separation: in general, for suffi-
ciently large continuation probability, there is a large variety of path-protecting neutrally

8It is also worth noting the work of Vesely and Yang (2010), which constitutes an approach based on
behavioral strategies.

9This framework has been used and extended in subsequent papers such as Fujiwara-Greve et al.
(2012, 2015).

10Izquierdo et al. (2021) can be considered an intermediate approach that combines the pool and
population states, which allows them to prove some relevant properties of the payoff functions.
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stable strategies. The concept of path-protecting strategy generalizes the idea of trust-
building strategies that appear in previous related works for the Prisoner’s Dilemma and
some of its variations (Datta, 1996; Ghosh and Ray, 1996; Carmichael and MacLeod,
1997; Kranton, 1996; Fujiwara-Greve and Okuno-Fujiwara, 2009). We have also ex-
tended the concept of path-protecting strategy from strategies (monomorphic states) to
mixtures of strategies in a population (polymorphic states).

Extensions of the framework of games with endogenous separation to multiplayer
asymmetric games or multi-population games present additional challenges and remain
an open field of research.
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A Other approaches to neutral stability in games with endogenous sep-
aration

Here we present previous definitions of neutral stability for games with endogenous
separation. Several of these definitions are based on a condition for (neutral) stability
from Taylor and Jonker (1978), which can be adapted as follows (Bomze and Weibull,
1995):

Definition 12. Considering a finite set of strategies S, a state x ∈ ∆(S) is neutrally
stable NSSTJ in ∆(S) if for every y ∈ ∆(S) there is some ϵ̄y ∈ (0, 1) such that

F (x, ϵ y + (1− ϵ)x) ≥ F (y, ϵ y + (1− ϵ)x)

for all ϵ ∈ (0, ϵ̄y).

Definition 13. Carmichael and MacLeod (1997). A Nash equilibrium population state
x is a neutrally stable state NSS1 if for every y ∈ D there exists an ϵy ∈ (0, 1) such that
for every ϵ ∈ (0, ϵy),

Fi( (1− ϵ)x+ ϵy) ≥ Fj( (1− ϵ)x+ ϵy)

for all i ∈ supp(x) and j ∈ supp(y).

Definition 14. Fujiwara-Greve and Okuno-Fujiwara (2009). A distribution in the
matching pool p is a neutrally stable pool distribution NSS2 if for every j ∈ Ω there
exists an ϵj ∈ (0, 1) such that for every ϵ ∈ (0, ϵj) and every i ∈ supp(x),
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F p
i ( (1− ϵ) p+ ϵ ej) ≥ F p

j ( (1− ϵ) p+ ϵ ej)

It is easy to see that, even when considering a restricted set of strategies S, the
conditions for NSS1 and NSS2 are not equivalent to NSSTJ . Izquierdo et al. (2021,
Appendix C) present simple examples of states that are NSSTJ but are not NSS1 or
NSS2, as well as examples of states that are NSS2 but not NSSTJ and which are not
stable in the replicator dynamics.

Considering behavioral strategies, Vesely and Yang (2010) provide a definition of
neutral stability for games with endogenous separation that is closer to the condition for
NSSTJ . However, an important point to consider is that, if the payoff functions Fi(x)
are not linear (and this is generically the case in games with endogenous separation),
being NSSTJ does not guarantee Lyapunov stability in the replicator dynamics in ∆(S)
(Bomze and Weibull (1995)). In contrast, the condition that we use for neutral stability
does guarantee Lyapunov stability in the replicator dynamics in ∆(S).

Izquierdo et al. (2021) provide a definition of neutral stability that looks rather
involved because it uses the population and pool distributions simultaneously, but which
can be shown to be equivalent to the following simplification:

Definition 15. Izquierdo et al. (2021). A population state x is a neutrally stable state
of a game with endogenous separation (NSS3) if it is a Nash equilibrium and for any
finite set of strategies S with S(p) ⊆ S there is a neighborhood OS of x in ∆(S) such
that F (x, y) ≥ F (y, y) for every y ∈ OS with F (y, x) = F (x, x).

It is easy to see that our condition for neutral stability (definition 3) involves satis-
faction of the condition for NNS3.

When comparing our results with those in Carmichael and MacLeod (1997), Fujiwara-
Greve and Okuno-Fujiwara (2009) or Izquierdo et al. (2021), the reader should keep in
mind the different definitions of neutral stability used in each of those papers.

B Strategies robust against indirect invasions

Here we consider the equilibrium condition of robustness against indirect invasions or
RAII (van Veelen, 2012) for games with endogenous separation. It can be argued that
any reasonable extension of this concept to games with endogenous separation would
require at least neutral stability and that every weakly path-equivalent strategy is also

neutrally stable, where j is said to be weakly path-equivalent to i if h
[∞]
jj = h

[∞]
ii = h

[∞]
ij

(the second equality is implied by the first), which implies that any mixture y of strategies
i and j satisfy E(y, ei) = Fi(ei) = Fi(y) = E(y, y). With these minimum requirements,
our results below show that, in many cases of interest, there are no RAII strategies
in games with endogenous separation. We first show that being RAII requires playing
Nash action profiles of the stage game and, in most cases of interest, it requires Tii = ∞
and a sufficiently low value of δ. For (sufficiently) large values of δ, and unless the
maximum payoff of the stage game is attained at a symmetric Nash action profile, no

24



strategy is robust against indirect invasions. The reason is that every strategy i has a
path-equivalent strategy j1 that would let a potential invader j2 who deviates in action
(from i or j1) at the first stage of an j29j1 partnership obtain the maximum stage game

payoff afterwards, in an infinite path a
[1,∞]
j2j1

. The payoff Fj2(ej1) to such a strategy j2
converges to the maximum stage game payoff as δ → 1.

Proposition B.1. A strategy i ∈ Ω can be robust against indirect invasions only if the
action profiles played in the i9i equilibrium path are Nash profiles of the stage game.

It follows from proposition 3.7 that, unless the maximum symmetric payoff of the
stage game corresponds to a Nash profile, Tii = ∞ is also a necessary condition for a
strategy to be RAII, as it is a necessary condition for neutral stability.

Proof of proposition B.1. Suppose that the action profile (a
[t]
i , a

[t]
i ) = (a, a) is not Nash.

Consider two strategies j and k such that:

� Strategy j is path-equivalent to i, so Fj(ej) = Fi(ei).

� Strategy k behaves with j (or with i) like j up to stage t (i.e., a
[1,t−1]
kj = a

[1,t−1]
jj =

a
[1,t−1]
ii if t > 1) and deviates at t by playing a best response action to action a,

obtaining at that stage a greater payoff than what j obtains in a j9j partnership.

� From stage t, strategies j and k do not break up and play the action profile that
provides k the maximum possible payoff of the stage game.

Then Fk(ej) > Fj(ej), so strategy j is not Nash.

Proposition B.2. For stage games with a single Nash action profile which does not
obtain the maximum symmetric payoff, such as the Prisoner’s Dilemma, no strategy in
the game with endogenous separation is RAII.

Proof of proposition B.2. The only possible candidates to be RAII are strategies with
Tii = ∞ that always play the Nash action profile at the equilibrium. But any such
strategy i has a weakly path-equivalent strategy j with finite Tjj that always plays the

Nash action profile in a
[1,Tjj ]
jj , and which, by proposition 3.7, is not neutrally stable.

Example B.1. For the Prisoner’s Dilemma, the only Nash action profile is (D,D) and
it does not obtain the maximum symmetric payoff UCC , so there are no RAII strategies
in the game with endogenous separation.

Example B.2. For the Hawk-Dove game, no symmetric action profile is Nash, so there
are no RAII strategies in the game with endogenous separation.
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C Example of a bimorphic path-protecting equilibrium

Consider a Prisoner’s Dilemma game with the payoffs shown in table 2. For the game
with endogenous separation, let strategy 1 and strategy 2 be two strategies that generate

the paths a
[1,∞]
ij shown in table 2, with the corresponding payoffs Fi(ej) shown in table 3.

Strategy 1 is such that, if an opposing strategy j generates in a j91 partnership a history

that is not coherent with either a
[1,∞]
11 or a

[1,∞]
21 , strategy 1 breaks up the partnership.

In the same way, strategy 2 breaks any j92 partnership as soon as the history deviates

from both a
[1,∞]
12 and a

[1,∞]
22 .

C D

C 3 −1

D 5 0

1 2

1 (DD)T1 (CC)∞ (DD)T2 DC (CC)∞

2 (DD)T2 CD (CC)∞ (DD)T2(CC)∞

Table 2: Left: Stage game payoffs for a Prisoner’s Dilemma, with C for Cooperate and D for Defect.
Right: Paths a

[1,∞]
ij that strategy 1 and strategy 2 generate together, with i for the row strategy and j

for the column. It is assumed that T1 > T2

1 2

1 δT1 3 δT2 [5 (1− δ) + 3 δ]

2 δT2 [(−1)(1− δ) + 3 δ] δT2 3

Table 3: Payoffs Fi(ej) corresponding to the paths shown in table 2.

Let us take T1 = 6, T2 = 4 and δ = 0.9, leading to the Fi(ej) payoffs shown in table 4.

1 2

1 1.59 2.10

2 1.71 1.97

Table 4: Payoffs Fi(ej) corresponding to the paths shown in table 2, for T1 = 6, T2 = 4 and δ = 0.9.

At a population state made up by strategies 1 and 2 in proportions x1 and x2,
considering that all paths have the same length, we have F1(x) = x1F1(e1)+x2F1(e2) and
F2(x) = x1F2(e1) + x2F2(e2). These formulas together with the payoffs in Table 4 show
that the internal or restricted game for strategies 1 and 2 has the structure of an anti-
coordination game (such as a Hawk-Dove game), which presents an internally neutrally
stable (in fact, internally evolutionarily stable) equilibrium x̂ where F1(x̂) = F2(x̂), at
x̂1 =

20
37 ≈ 0.54 and x̂2 =

17
37 ≈ 0.46, with E(x̂, x̂) ≈ 1.83.

Let us check that x̂ is path-protecting.

� Strategies that do not get past history (DD)4 when playing with strategies 1 or
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2 (they break up or deviate in action before stage 5) obtain at most the minmax
payoff UDD = 0 < E(x̂, x̂).

� Strategies j that after history (DD)4 play D (as strategy 1 does and strategy 2

does not) may go on generating with 1 and 2 the same paths a
[1,∞]
11 and a

[1,∞]
12

as strategy 1 does, may break up at stage 5 (after playing), or may deviate from

a
[1,∞]
11 at stage Tj1 > 5 and from a

[1,∞]
12 at stage Tj2 > 5, obtaining a payoff (see

(6), considering that the pool and population strategy distributions at x̂ are the
same):

Fj(x̂) =
x̂1(1− δTj1)

x̂1(1− δTj1) + x̂2(1− δTj2)
Fj(e1) +

x̂2(1− δTj2)

x̂1(1− δTj1) + x̂2(1− δTj2)
Fj(e2).

Let us focus first on Fj(e2) for deviations from a
[1,∞]
12 after stage 5. Applying

lemma D.1, we have that if Fj(e2) < F1(e2) for every possible deviation at Tj2 = 6

(first play of the repeated pattern CC in h
[∞]
12 ), then Fj(e2) < F1(e2) for every finite

Tj2 > 6. Fj(e2) for a strategy j that breaks up at Tj2 = 5 or deviates at Tj2 = 6 is
bounded by the payoff corresponding to the series of stage payoffs (0, 0, 0, 0, 5, 5),
which is 1−δ

1−δ6
δ4 (5 + 5 δ) = 1.33 < F1(e2), so Fj(e2) < F1(e2) for Tj2 ≥ 5.

Let us focus now on Fj(e1) for break-up at stage 5 or deviations from a
[1,∞]
11 after

stage 5. The payoff to these strategies is bounded by 0 for 5 ≤ Tj1 ≤ 6 and
by the payoff corresponding to the series of stage payoffs (0, 0, 0, 0, 0, 0, 3, ..., 3, 5),

which is 1−δ

1−δTj1

[
δ6 3(1−δTj1−7)

1−δ + δTj1−1 5
]
for Tj1 > 6. Applying lemma D.1 for

deviations at Tj1 = 7 (first play of the repeated pattern (CC) in h
[∞]
11 ) shows

Fj(e1) < F1(e1) < F1(e2). We can now state the following bound:

Fj(x̂) ≤
x̂1(1− δTj1)

x̂1(1− δTj1) + x̂2(1− δTj2)
Fj(e1) +

x̂2(1− δTj2)

x̂1(1− δTj1) + x̂2(1− δTj2)
F1(e2).

Considering that Fj(e1) < F1(e1) < F1(e2), and that the weight multiplying F1(e2)
on the previous convex combination of F1(e2) and Fj(e1) increases with Tj2, we find
that, for every Tj1, the maximum value of the bound corresponds to Tj2 = ∞ (being
smaller for finite Tj2). Thus, bearing in mind that Fj(e1) ≤ 0 for 5 ≤ Tj1 ≤ 6, we
have:

Fj(x̂) ≤
x̂2

x̂1(1− δ5) + x̂2
F1(e2) ≈ 1.42 < E(x̂, x̂), for 5 ≤ Tj1 ≤ 6.

And, for Tj1 > 6,

Fj(x̂) ≤
x̂1(1− δ)

x̂1(1− δTj1) + x̂2

[
δ6 3(1− δTj1−7)

1− δ
+ δTj1−1 5

]
+

x̂2 F1(e2)

x̂1(1− δTj1) + x̂2
.
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Note that the only variable in the previous bound is Tj1, with all the other terms
being known numbers. By taking the derivative of this bound with respect to Tj1

it can be checked that it is monotonic increasing with Tj1 (for Tj1 > 6), and its
limit is E(x̂, x̂). Consequently, any strategy j that, when playing with strategies
1 and 2, gets to stage 5 and plays D there (as strategy 1 and its path-equivalent-
in-{1, 2} strategies do) obtains a payoff Fj(x̂) < E(x̂, x̂) if j is not path-equivalent
to strategy 1 in the set of strategies {1, 2}.

� We now consider strategies j that after history (DD)4 play C (as strategy 2 does
and strategy 1 does not). Applying the same procedure that we followed before,
it can be shown that any such strategy j that, when playing with strategies 1
and 2, gets to stage 5 and plays C there (as strategy 2 and its path-equivalent-in-
{1, 2} strategies do), obtains a payoff Fj(x̂) < E(x̂, x̂) if j is not path-equivalent
to strategy 2 in the set of strategies {1, 2}.

D Proofs

Proof of proposition 3.1. Let i be a Nash strategy and let a∅ = i(∅) be the first action
played by i. Let j be a strategy that plays a best-response action to a∅ when starting a
new partnership, i.e., j(∅) ∈ BR(a∅), and then breaks the partnership. We have Fj(ei) =
maxl U(al, a

∅). Considering that M is an upper bound for Fi(ei), the Nash condition
Fi(ei) ≥ Fj(ei) requires M ≥ maxl U(al, a

∅) or, equivalently, UBR(a∅) ≤ M .

Proof of proposition 3.2. State x has an associated pool state p = f−1(x). Any strategy
arriving at the pool of singles p to be matched faces a distribution of initial actions
q ∈ ∆(A) (given by qk =

∑
i∈S(x):i(∅)=ak

pi). Given a state x and its associated q,
consider a strategy j that at the beginning of a partnership plays a best response action
to the distribution of actions q and then breaks the partnership. The payoff Fj(x) to
such a strategy is at least m. Consequently, if x is Nash, then E(x, x) has to be greater
than or equal to m. For monomorphic states, we have that Fj(ei) is at least m, while
M is an upper bound for Fi(ei).

Proof of proposition 3.3. Suppose that i is a strategy with finite self-break-up period Tii

and the last action profile (a
[Tii]
i , a

[Tii]
i ) in an i9i partnership is not a Nash profile of the

stage game G. Consider a strategy j that when playing against i:

� behaves against i as i itself up to stage Tii − 1, i.e., j(a
[0,t]
ii ) = i(a

[0,t]
ii ) for 0 ≤ t <

Tii − 1,

� at stage Tii of an i9j partnership plays a best-response action against the action

a
[Tii]
i played by i at that stage, and

� leaves i (i.e., breaks the partnership with i) after stage Tij = Tii.
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Strategy j obtains the same stage payoff against i as i itself for the first Tii − 1 stages
of a partnership and a higher payoff at the last stage Tii. Consequently, considering (8),
Fj(ei) > Fi(ei), so i cannot be a Nash strategy.

Proof of proposition 3.4. Suppose that i is a Nash strategy with finite self-break-up pe-
riod Tii that plays the action profile (C,C) at some stage (between stages t = 1 and
t = Tii) of an i9i partnership. Then we have Fi(ei) > U(D,D). Let tl be the last stage
at which (C,C) is played. Consider a strategy j that when playing against i:

� behaves against i as i itself up to stage tl−1, i.e., j(a
[0,t]
ii ) = i(a

[0,t]
ii ) for 0 ≤ t < tl−1,

� at stage tl of an i9j partnership plays action D, obtaining a stage payoff U(D,C) >
U(C,C), and

� breaks the partnership with i after stage tl.

Using formula (8), it can be seen that Fj(ei) > Fi(ei), so i is not a Nash strategy
(contradiction). The reason, comparing the sequence of payoffs to i in the infinite

series h
[∞]
ii and to j in the infinite series h

[∞]
ji is that j obtains a higher payoff at

stage tl and (if tl < Tii) shortens the sequence of lowest payoffs U(D,D) until the
next high payoffs U(C,C) or U(D,C).

Proof of proposition 3.5. With the conditions on i, the infinite series of actions that
a j-player faces in a population of i-players (see 7) is (aN , aN , ...). The best stage-
payoff against aN is obtained by aN , and, considering that Fj(ei) = V (h∞ji ) = (1 −
δ)

∑∞
t=1 δ

t−1U(h
[t]
ji ), the best payoff against any strategy i satisfying the condition is

obtained by strategies j that generate the path h
[∞]
ji = ((aN , aN ), (aN , aN ), ...), which

obtain the payoff Fj(ei) = U(aN , aN ). If i1 and i2 satisfy the conditions for i, we have
Fi1(ei1) = Fi1(ei2) = Fi2(ei1) = Fi2(ei2) = U(aN , aN ). As Fi(x) is a strictly convex
combination of the payoffs Fi(ej) for j ∈ S(x), we have proved the result: if x is a
mixture of strategies satisfying the condition for i, we have F (x, x) = U(aN , aN ) ≥ Fj(x)
for every j ∈ Ω.

Proof of proposition 3.6. Given any finite set of strategies S, we can number the strate-
gies and identify distributions x whose support is in S with real vectors x̂ ∈ ∆(S) ≡ {x̂ ∈
R|S|
+ :

∑|S|
k=1 x̂k = 1}. The restriction of Fi to distributions with support in S can then

be identified with a function Fi|S : ∆(S) → R. Fi|S is Lipschitz continuous in ∆(S).11

Given any finite set of strategies S ⊂ Ω and a neutrally stable state x with support
in S, it follows from definition 3 and from the Lipschitz property of the payoff functions
Fi|S in ∆(S) that the point x̂ ∈ ∆(S) associated to state x satisfies the conditions in

11See Izquierdo et al. (2021). A function f : ∆(S) → R is Lipschitz continuous in ∆(S) if there exists
a positive real constant K such that, for all x and y in ∆(S), |f(x)− f(y)| ≤ K||x− y||.
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Thomas (1985) [Theorem 1] to be a weakly evolutionarily stable state in ∆(S) and,
consequently, x̂ is Lyapunov stable in the replicator dynamics restricted to S.

Proof of proposition 3.7. Let (aM , aM ) ∈ AM be one of the symmetric action pro-
files (there may be more than one) that attain the maximum symmetric payoff M =
maxa∈A U(a, a).

Suppose that Tii is finite and Fi(ei) < M . This implies that h
[∞]
ii is a repetition of

a pattern of length Tii, and, for any fixed t0, there is always t > t0 with U(h
[t]
ii ) < M .

Consider a strategy j that when playing with i behaves like i up to period Tii, but
at that period does not break the partnership and turns to playing action aM forever,
without breaking the partnership. That would make play between strategy i and strategy
j unfold in the same way as it does between two players that play strategy i, with

h
[∞]
ji = h

[∞]
ii = h

[∞]
ij , and hence Fj(ei) = Fi(ei) = Fi(ej). For t ≤ Tii, two players

that play strategy j obtain a payoff U(h
[t]
jj) = U(h

[t]
ii ) = U(h

[t]
ij ) . For t > Tii, we

have U(h
[t]
jj) = M , while U(h

[t]
ij ) = U(h

[t]
ii ) ≤ M and, for some t > Tii, U(h

[t]
ij ) < M .

Consequently, considering (8), Fj(ej) > Fi(ej), so i is not neutrally stable. Up to now
we have proved that if i is neutrally stable with finite Tii then Fi(ei) = M , which implies

U(h
[t]
ii ) = M for every t. Suppose that payoff M is obtained at time t1 by some action

profile ht1ii which is not a Nash equilibrium of the stage game. Then a strategy j that
when playing with i chooses the same action as i up to period t1 (obtaining M at every
period up to t1 if t1 ≥ 1), but at period t1 plays a best response the action taken in ht1ii
and breaks the partnership, obtains a payoff Fj(ei) > M = Fi(ei), which cannot happen
if i is neutrally stable.

Proof of proposition 4.1. Let strategy i be weakly path-protecting and let j1 and j2 be
two alternative best responses to ei, i.e., {j1, j2} ∈ BR(ei). Considering that the action

profiles in h
[∞]
ii are symmetric, we have h

[∞]
j1i

= h
[∞]
j2i

= h
[∞]
ii = h

[∞]
ij1

= h
[∞]
ij2

. In a j19j2
partnership, no strategy can take an action different from the one they take when playing
with i until the split-up period Tj1j2 = min(Tij1 , Tij2), because the generated histories up
to that point are the same as in an i9i partnership and, until they break the partnership,

both j1 and j2 take the same action as i does given the history. Consequently, h
[∞]
j1j2

coincides either with h
[∞]
j1i

= h
[∞]
ii or with h

[∞]
j2i

= h
[∞]
ii . Then we have h

[∞]
j1j2

= h
[∞]
ii =

h
[∞]
ij1

= h
[∞]
ij2

, which implies that, for {j1, j2} ∈ BR(ei), Fj1(ej2) = Fj1(ej1) = Fi(ei) =
Fi(ej1) = Fi(ej2). Now, if y is a mixture of best responses to ei and j is a best response
to ei, we have Fj(y) = Fi(ei) = Fi(y) and, consequently, E(y, y) = Fi(y), proving that i
is neutrally stable.

Proof of proposition 4.2. Let i be a strategy satisfying the conditions of the proposition.

It is clear that Tii = ∞, h
[∞]
ji = ((â, â), (â, â), ...) and Fi(ei) = U(â, â). Any strategy j

playing with i-players generates a repeated path h
[∞]
ji in which the action taken by i is

always â, so, given that (â, â) is a (strict) Nash profile and that any deviation from the
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profile (â, â) is caused by strategy j (i always plays â, so the second action in the profile

is always â), we have U(h
[t]
ji ) ≤ U(â, â) for every t. In fact, since (â, â) is strict Nash, we

have h
[t]
ji ̸= (â, â) =⇒ U(h

[t]
ji ) < U(â, â), and, considering that Fj(ei) is a strictly convex

combination of the payoffs U(h
[t]
ji ), it follows that h

[∞]
ji ̸= h

[∞]
ii =⇒ Fj(ei) < U(â, â) =

Fi(ei), proving that i is weakly path-protecting.

Proof of proposition 4.3. Consider a strategy i such that Tii = ∞ and

h
[∞]
ii = (Φm,Φf , (Φp)

∞),

where:

� Φm is a Tm-long repetition of a minmax action profile (ã, ã).

� Φf is a Tf -long sequence of symmetric action profiles.

� Φp is a Tp-long sequence of symmetric action profiles with average stage payoff
ŪΦp > m.

As soon as another strategy j in an i9j partnership deviates from i’s own action, strategy
i breaks the partnership.

Take Φf and Φp as fixed, and the length Tm of Φm as a parameter. We will show
that, for large enough Tm and, then, for large enough δ,

h
[∞]
ji ̸= h

[∞]
ii =⇒ Fj(ei) < Fi(ei),

i.e., strategy i is weakly path-protecting. By choosing Φp in a way such that path h
[∞]
ii

is not an infinite repetition of a pattern, strategy i is also path-protecting.
We will need some intermediate results. First, lemma D.1 implies that, in order

to prove the implication h
[∞]
ji ̸= h

[∞]
ii =⇒ Fj(ei) < Fi(ei), it is enough to prove

that this statement holds for strategies j whose repeated path h
[∞]
ji differs or deviates

from h
[∞]
ii before repetition of the pattern Φp begins, i.e., between periods t = 1 and

t = Tm + Tf + Tp: if every deviation up to period t = Tm + Tf + Tp is harmful, then
every deviation (no matter when) is harmful. Consequently, it is enough to consider a
finite number of possible deviating paths: those that deviate at some t not greater than
Tm + Tf + Tp.

Second, the payoff to a strategy that deviates at t ≤ Tm is bounded above by the
minmax payoff m (because i plays a minmax action up to stage Tm, so the stage payoff
for a strategy j at every stage up to and including the deviating stage t ≤ Tm is bounded
above by m). Let L be the maximum payoff in the stage game. Considering a repeated
sequence (m, ...,m, L, ..., L) of Tm payoffs m and Tf + Tp payoffs L, we have that the
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payoff to a strategy that deviates not later than Tm + Tf + Tp is bounded above12 by

VL ≡ m(1− δTm) + δTm(1− δTf+Tp)L

1− δTm+Tf+Tp
.

Third, if an infinite sequence of action profiles Φ ends up repeating some finite pattern
Φ1, i.e., if Φ = (Φ0, (Φ1)

∞) for some finite sequences Φ0 and Φ1, then
13

lim
δ→1

V (Φ) = ŪΦ1 .

This implies

lim
δ→1

VL = α ≡
mTm + L (Tf + Tp)

Tm + Tf + Tp
, (11)

with limTm→∞ α = m, and

lim
δ→1

Fi(ei) = ŪΦp > m. (12)

Choose some positive ϵ <
ŪΦp−m

3 . From (11), and considering that α approaches m
as Tm grows, we can find a value for Tm such that α < m+ ϵ, and then, fixing such Tm,
there is some δ1 such that, for δ > δ1, VL < m+ 2ϵ.

From (12), there is some δ2 such that, for δ > δ2, Fi(ei) > ŪΦp − ϵ. Consequently,
for δ > max(δ1, δ2),

VL < Fi(ei),

proving that strategy i is path-protecting.

In preparation of the following result, for any finite series of action profiles Φ, let (Φ)k

represent the sequence made up by repeating k times the action profiles in Φ. Remember
that (Φ)∞ represents the infinite repetition.

Lemma D.1. Consider two (not necessarily different) strategies j and i with h∞ji =
(Φ0, (Φp)

∞), where Φ0 and Φp are finite sequences of action profiles (and where Φ0 may
be empty). Let Φ1 be another finite sequence of action profiles. If j1 and j2 are strategies
such that

h∞j1i = (Φ0,Φ1)
∞ and

h∞j2i = (Φ0, (Φp)
k,Φ1)

∞ for some k ∈ N

then
Fj1(ei) < Fj(ei) ⇐⇒ Fj2(ei) < Fj(ei).

12It is easy to check that, for a fixed number of m payoffs Tm, VL is non-decreasing with the number
of L payoffs (VL is a weighted average of m and L ≥ m, with the weight of m decreasing if the number
of L payoffs increases), so, by taking a number of L values equal to Tf + Tp, we can be sure that VL is
an upper bound for the payoff to any strategy that deviates up to t = Tm + Tf + Tp.

13This can be shown using L’Hopital rule.
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Proof of lemma D.1. For any sequence Φ of length T ≥ 1, let

V (Φ) =
1− δ

1− δT

T∑
t=1

δt−1 U(Φ[t]).

Let the respective lengths of Φ0,Φp and Φ1 be T0 ≥ 0, Tp ≥ 1 and T1 ≥ 1. If T0 = 0 let
V (Φ0) = 0. Then

Fj(ei) = (1− δT0)V (Φ0) + δT0V (Φp),

Fj1(ei) =
(1− δT0)V (Φ0) + δT0(1− δT1)V (Φ1)

1− δT0+T1
, and

Fj2(ei) =
(1− δT0)V (Φ0) + δT0(1− δk Tp)V (Φp) + δT0+k Tp(1− δT1)V (Φ1)

1− δT0+k Tp+T1
.

Any of the two conditions Fj1(ei) < Fj(ei) or Fj2(ei) < Fj(ei) can then be seen to
be equivalent (rearranging and simplifying terms) to the condition

δT1(1− δT0)V (Φ0) + (1− δT1)V (Φ1) < (1− δT0+T1)V (Φp).

Proof of proposition 5.1. Suppose that a Nash equilibrium state x includes a weakly

path protecting strategy i and some strategy j with h
[∞]
ji ̸= h

[∞]
ii , then:

� Fi(x) = E(x, x), because x is Nash and i is in its support, so i ∈ BR(x), and

� E(x, ei) < Fi(ei), because i is weakly path-protecting (so it is Nash) and x in-

cludes a strategy j that deviates from h
[∞]
ii when playing with i, obtaining a payoff

Fj(ei) < Fi(ei).

Consequently, x is not neutrally stable.

Proof of proposition 5.2. Let Eq(x) be the set of strategies that are path-equivalent in
S(x) to some strategy in S(x), and let Ēq(x) be the complement of this set. As x is
Nash and path-protecting, we have Fi(x) = E(x, x) for i ∈ Eq(x) and Fi(x) < E(x, x)
for i ∈ Ēq(x). Consequently, any state y that includes strategies both in Eq(x) (for
which Fi(x) = E(x, x)) and in Ēq(x) satisfies E(y, x) < E(x, x), and only mixtures of
strategies in Eq(x) can be (are) alternative best responses to x. Because any strategy
that is path-equivalent in S(x) to strategy i ∈ S(x) behaves like i does with strategies in
Eq(x), for any mixture y of strategies in Eq(x) there is an “internal” state ŷ satisfying
S(ŷ) = S(x) such that E(ŷ, x) = E(x, x), E(x, y) = E(x, ŷ) and E(y, y) = E(ŷ, ŷ).
Consequently, internal neutral stability (which guarantees E(x, ŷ) ≥ E(ŷ, ŷ)) guarantees
neutral stability (E(x, y) ≥ E(y, y)).
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